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INTRODUCTION 

A rocket engine with a standard single-section profiled nozzle pro-
vides maximum thrust only at a certain value of atmospheric pressure [1]. 
To expand the range of atmospheric pressure values at which the optimum 
engine operation mode is achieved, a dual bell nozzle can be used [2]. A 
typical diagram of such a nozzle is shown in Fig. 1. Its main elements are 
three cross-sections a, b, c and two profiled section elements a-b, b-c 
bounded by them. The fig. 1 shows the general case of the contour of such 
a nozzle, for which a corner in the generatrix is located at points a and b. 
In addition, the section a coincides with the critical section of the engine 
chamber. 

 
 
Let’s consider the principle of operation of such a nozzle. When oper-

ating at low altitude, with a high value of atmospheric pressure pe1, the 

Figure 1 – Dual bell nozzle contour 
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thrust is generated only by the first profiled section a-b. With an increase 
in flight altitude and a corresponding drop in atmospheric pressure to pe2 
(pe1 > pe2), the flow of combustion products expands, begins to flow around 
the second profiled section and create additional thrust. Thus, an engine 
with a dual bell nozzle will generate more average flight time thrust than 
an engine with a single nozzle designed to operate at one of the atmos-
pheric pressures pe1 or pe2. 

Usually, the method of characteristics [3] is used for profiling a dual 
bell nozzle. However, it has the following disadvantages:  

– the inability to profile the maximum thrust nozzle with explicit re-
strictions on its dimensions, weight, etc.;  

– the requirement for the absence of shock waves in the flow of 
combustion products inside the nozzle.  

As an alternative to the method of characteristics, this paper proposes 
to use the direct method of calculus of variations [4] for profiling a dual 
bell nozzle. 

THE AIM AND TASKS OF THE STUDY 

The aim of the work is to obtain the thrust functional for its further 
maximization using the direct method of the calculus of variations. To 
achieve this goal, it is necessary to solve the following tasks:  

– determine the initial data necessary to derive the thrust functional 
and to implement its further maximization;  

– derive the expression of the thrust functional. 

INITIAL DATA 

The initial data for the problem of profiling the axisymmetric dual bell 
nozzle by the direct method of the calculus of variations are:  

– known contour of the subsonic part of the rocket engine chamber;  
– mathematical model of combustion products used to describe their 

flow inside the nozzle;  
– parameters of combustion products in the critical section: pressure, 

density and velocity vector;  
– atmospheric pressure values at both engine operating modes pe1 and 

pe2, (pe1 > pe2). 
As the main mathematical model describing the flow of combustion 

products in the liquid rocket engine chamber, a model of an inviscid com-
pressible ideal gas of constant chemical composition was chosen, consist-
ing of a system of stationary Euler equations (1), which was closed by the 
Mendeleev-Clapeyron equation of state [5]. System (1) is written in 
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differential form in a cylindrical coordinate system under the assumption 
of axial symmetry of the flow of combustion products inside the LRE 
chamber. 

∂𝑭

∂𝑥
+

∂𝑮

∂𝑅
= 𝑺, 

 

𝑭 = (𝑅𝜌𝑢, 𝑅(𝜌𝑢2 + 𝑝), 𝑅𝜌𝑣𝑢, 𝑅(𝜌𝐸 + 𝑝)𝑢)𝑻, 
 

𝑮 = (𝑅𝜌𝑣, 𝑅𝜌𝑢𝑣, 𝑅(𝜌𝑣2 + 𝑝), 𝑅(𝜌𝐸 + 𝑝)𝑣)𝑻,   
 

𝑺 = (0, 0, 𝑝, 0)𝑻,  
 

𝐸 =
𝑝

𝜌 (𝑘 − 1)
+

1

2
(𝑢2 + 𝑣2),                              (1) 

 
where F – axial flux vector; 

G – radial flux vector; 
S – source term; 
R – radius, m;  
ρ – density, kg/m3; 
p – pressure, Pa; 
u – axial velocity, m/s; 
v – radial velocity, m/s; 
E – total energy, J/kg; 
k – heat capacity ratio. 

THRUST FUNCTIONAL DERIVATION 

The thrust of an arbitrary axisymmetric nozzle can be defined as the 
resultant of the pressure forces applied to the side surface of the nozzle [1]: 

 

𝑃 = ∫(𝑝𝑖𝑛 − 𝑝𝑒)𝑑𝐹,

𝐹

                                    (2) 

where P – thrust, H;  
F – side surface area of a nozzle, m2; 
pin – combustion products pressure inside the nozzle, Pa; 
pe – atmospheric pressure at the given altitude, Pa. 

Let us select on the nozzle contour an annular element with a width 
dx, a height dR and located at a distance R from the axis of symmetry of 
the nozzle (fig. 2).  
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Its side surface area equals dF = 2πRds. Using this equality, the inte-
gral (2) can be represented as: 

 

𝑃 = ∫(𝑝𝑖𝑛 − 𝑝𝑒)𝑑𝐹

𝐹

= ∫(𝑝𝑖𝑛 − 𝑝𝑒)2𝜋𝑅𝑑𝑠

𝑠

= 2𝜋 ∫(𝑝𝑖𝑛 − 𝑝𝑒)𝑅𝑑𝑠

𝑠

 (3) 

 
Due to the axial symmetry of the nozzle, all the radial components of 

the thrust will be mutually balanced, therefore, in what follows, we will 
take into account only its axial component. In view of this, expression (3) 
is transformed to the following form:  

 

𝑃 =  2𝜋 ∫(𝑝𝑖𝑛 − 𝑝𝑒)𝑅 𝑐𝑜𝑠 𝜑 𝑑𝑠

𝑠

                                  (4) 

 
From the fig. 2 one can deduce that cosφ = cos(90-θ) = sinθ = dR/ds, 

and since R` = dR/dx, then rewrite (4) in this way: 
 

Figure 2 – Annual element of a nozzle contour 
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𝑃 =  2𝜋 ∫(𝑝𝑖𝑛 − 𝑝𝑒)𝑅 
𝑑𝑅

𝑑𝑠
 𝑑𝑠

𝑠

= 2𝜋 ∫ (𝑝𝑖𝑛 − 𝑝𝑒)𝑅 
𝑅′𝑑𝑥

𝑑𝑠
 𝑑𝑠

𝑠

=

=  2𝜋 ∫ (𝑝𝑖𝑛 − 𝑝𝑒)𝑅 𝑅′𝑑𝑥

𝑥2

𝑥1

,                                              (5) 

 
where x1 – the coordinate of the beginning of the nozzle at the horizontal 

axis, m; 
x2 – the coordinate of the end of the nozzle at the horizontal axis, m; 
R = R(x) – nozzle contour that is being designed. 

Let’s transform the integrand from (5): 
 

∫ (𝑝𝑖𝑛 − 𝑝𝑒)𝑅 𝑅′𝑑𝑥

𝑥2

𝑥1

= ∫ 𝑝𝑖𝑛 𝑅 𝑅′𝑑𝑥

𝑥2

𝑥1

− ∫ 𝑝𝑒  𝑅 𝑅′𝑑𝑥

𝑥2

𝑥1

                 (6) 

 
Since the atmospheric pressure does not depend on the integration var-

iable, we take it out of the brackets and integrate the second term into (6): 
 

∫ 𝑝𝑒  𝑅 𝑅′𝑑𝑥

𝑥2

𝑥1

= 𝑝𝑒 ∫  𝑅 𝑅′𝑑𝑥

𝑥2

𝑥1

= 𝑝𝑒 ∫  𝑅 𝑑𝑅

𝑅2

𝑅1

=
𝑝𝑒

2
(𝑅2

2 − 𝑅1
2)      (7) 

 
Let’s substitute (6) and (7) into (5). As a result, we get the final ex-

pression for determining the thrust of an arbitrary nozzle: 
 

𝑃 =  2𝜋 ∫ 𝑝𝑖𝑛 𝑅 𝑅′𝑑𝑥

𝑥2

𝑥1

− 𝜋 𝑝𝑒(𝑅2
2 − 𝑅1

2) = 𝑃𝑖𝑛 − 𝑃𝑒                (8) 

 
In (8), there are clearly two thrust components: an internal one, which 

depends on the pressure of the combustion products, and an external one, 
which depends only on the pressure of the atmosphere.  

Now use (8) to calculate the thrust of the dual bell nozzle shown in  
fig. 1. In the first operation mode with high atmospheric pressure pe1, only 
the first section of the nozzle a-b will create thrust, in the second mode - 
both sections a-b and b-c. Therefore, (8) for the second and the first mode 
will take the form (9): 
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𝑃𝑚 =  𝑃𝑚 𝑖𝑛 − 𝑃𝑚 𝑒 = 2𝜋 ∫ 𝑝𝑖𝑛 𝑅 𝑅′𝑑𝑥

𝑥𝑏

𝑥𝑎

− 𝜋 𝑝𝑒𝑚(𝑅𝑚
2 − 𝑅𝑎

2)       (9) 

 
Here the number m can get values 1 and 2 depending on the mode, 

R1 = Rb, R2 = Rc. 
Let's combine the separate thrust equations taken from (9) to obtain 

the total thrust equation (10) for the both modes simultaneously. To do this, 
we introduce the coefficient α equal to 0 in the first mode and 1 in the 
second. Then the expression for the total thrust of the dual bell nozzle takes 
the form: 

 
𝑃∑ = 𝑃1𝑖𝑛 − (1 − 𝛼)𝑃1𝑒 + 𝛼(𝑃2𝑖𝑛 − 𝑃2𝑒),                  (10) 

 
where α – the coefficient, that equals to 0 in the first operation mode and 

1 – in the second; 
PΣ – dual bell nozzle total thrust, H. 

We will obtain the final form of the thrust functional by adding to (10) 
the restrictions imposed by the chosen mathematical model of combustion 
products (1). To do this, we use the Lagrange multipliers [6] - we introduce 
four unknown functions λ1, λ2, λ3, λ4, that depend on x and R, multiply them 
by the corresponding equations from the system (1) and sum them up: 

 

∑ 𝜆𝑖

4

𝑖=1

(𝑥, 𝑅) (
∂𝑭𝒊

∂𝑥
+

∂𝑮𝒊

∂𝑅
− 𝑺𝒊)                            (11) 

 
To add (11) to (10), we integrate (11) over the region K bounded from 

below by the axis of symmetry of the nozzle and from above by its contour. 
After that, the desired thrust functional will take the final form: 

 

𝓟 = 𝑃∑ + ∬ ∑ 𝜆𝑖

4

𝑖=1

(𝑥, 𝑅) (
∂𝑭𝒊

∂𝑥
+

∂𝑮𝒊

∂𝑅
− 𝑺𝒊) 𝑑𝐾

𝑲

              (12) 

 
The values of functional (12) can only be obtained as a result of nu-

merical simulation of the flow of combustion products in the chamber of 
a liquid rocket engine. To implement this, various numerical methods can 
be used [7, 8].  
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CONCLUSIONS 

In the work, the initial data for the problem of profiling a dual bell 
nozzle were determined. An expression for the thrust functional was also 
obtained for such a nozzle. This will allow in the future to solve the prob-
lem of its maximization using the direct method of calculus of variations, 
the result of which will be the dual bell contour of the, producing the max-
imum thrust. 
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