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The discipline "Aircraft strength analysis" is taught to students of the 

Faculty of Physics and Technology of the specialties "Design and Production of 

RKLA" and "Aircraft." The main basic textbook is “Building Mechanics of Flying 

Apparatuses”  edited by I.F. Obraztsova. - M. Machine-building, 1986. - 536 s. 

In this manual, the materials of the textbook in an abbreviated version and 

those that were not included in the specified textbook are given in part. 

 

 

Subject 1 Basic definitions, aircraft integrity rate setting 

 

 Aircraft is a plane, launch vehicle or spaceship which has to take loads being 

functioned on it during operational process without damage and inadmissible shape 

change, which is to say being rigged and rugged enough. This requirement must be 

fulfilled by any engineering structure, but, aircraft structure has to be also differed 

by minimum mass requirement. That’s clear that the minimum mass requirement 

contradicts the requirements of having enough integrity and spring rate. Solving of 

this contradiction is one of the key problems arising under aircraft project 

development. It is carried out in calculations, design and experimental method 

process, both construction all the way around and its single parts and stipulates 

aircraft efficiency increasingly. 

 Aircraft strength analysis, like any kind of engineering analysis includes the 

following stages: 

 - Analytical model choice. A real – world object (aircraft) is studied and its 

characteristics being distinguished at that stage. It’s necessary to pass on from 

difficult construction to simple model. 

 - Analytical model analysis. Integrity and spring rate analysis of typical 

models by structural performance of materials and strength analysis methods. 

 - Backjumping from analytical model to real – world object and drawing 

conclusions towards its sufficient (unsufficient) integrity. 

 



 

  

 

 1. Analytical model choice. 

  

 Modern aircraft constructions are quite manifold. They consist of various 

elements which are differed by purpose of use, form, geometry, being used structural 

materials, methods of connecting them with each other, manufacture method etc. 

 Aircraft construction is divided into the variety of individual elements 

(accessories, tanks etc.) in strength analysis practice. Herewith, separate accessories 

interplay on each other with their gross productivity changes the activity of power 

factors in the form of axial and lateral forces, bending and rotational moments which 

are transferred through docking devices to connect the accessories. 

 That’s why in aircraft strength analysis it’s right to consider not just the 

constructions, but their analytical models which are simple models of real 

constructions with known theoretical solutions. 

 For the choice of right analytical model of real construction it’s necessary to 

imagine yourself the assignment of every load – bearing element, pattern of its load 

and work feature of the whole construction. 

 First of all construction load-bearing element shape and size dimensions is 

carried out, which is to say the concept of load-bearing elements in a view of simple 

in shape elements (bar, beam, plate, panel, shell), for such ones are known the 

principles and methods of calculating in structural performance of materials. 

 Bar is a longish structural element that works on tensile and comprehension. 

One geometrical characteristic is really bigger than two others.  The examples of bar 

model application in aircraft structure can be different elements of truss 

constructions and booms of the stiffened tanks.   

 Beam is a structural element that works on flection from lateral force efforts. 

As an example there may be some longish elements of device attachment. The wing 

can be considered as a clamped - free beam. 

 Panel is a flat or curved plate that takes up normal and tangent stresses. The 

panel is usually reinforced by axial and (or) lateral force sets. Flat and low arched 

panels are widely used in the analysis of wings structural elements, in analysis of 

dry compartments and attached tanks sheet work, in the structure elements of space 

aircraft main body. 

 Shell is the most complex element that takes up all kinds of loads. There are 

cylindrical, spherical, torus and conical shells, also attached and unattached ones.   



 

Shells analytical models are used during propellant tanks, dry compartments, high – 

pressure bottles, air frames calculations. 

 The next stage of analytical model choice consists of analysis in load of 

structural element. The external loads that impacts on construction are also presented 

in simplified and comfortable form for calculation. There are surface and mass, 

distributed and concentrated, static and dynamic forces. Distributed loads are as a 

rule presented uniform or linear. 

 An important component of calculating model is a connection element 

diagram that is considered with another structural elements which preclude of its 

displacement under the influence of loads. There can be used hard fixation, hinge 

support, elastically pliable connection etc. 

 During the choice of analytical model, along with the catalogue it’s required 

to consider the properties of the material from which construction elements are made 

of. Basic assumption during the material properties schematization consist in the fact 

that it is takin solid. It’s necessary to have the functional connection between stresses 

and deformations for stresses and deformations in the construction elements 

(Hooke’s Law or Plastic deformation Law).  The material may be isotropic or 

anisotropic. Metals and its alloys are isotropic materials; Composite materials with 

directional reinforcement are orthogonal – anisotropic.   

  

Thus, it’s necessary to solve the idealization tasks during the analytical model 

choice:  

 

         -    size dimensions and forms, 

- grip conditions, 

- loads, 

- material properties. 

 

 Real construction schematization process leads to calculation mistakes. 

Taking the assumptions and simplifications it’s necessary to imagine yourself the 

way they can influence on calculation results very clearly. It’s necessary to follow 

the way like assumptions be taken only in material factor.  

 

 Strength analysis is a science about principles and methods of determining 

typical models deflected mode, its storage qualities analysis and dynamic behavior.    

 

 Aircraft strength analysis differs from other directions of this science mainly 

by thin structure analysis, and also by rising of requirement to calculating methods 

accuracy which considering construction mass limitation have to guarantee its safe 

work s material distinctive features.   

  

Strength analysis object of study is space aircraft.  

 

The aim is to learn the engineering methods of integrity, spring rate and rigidity 

aircraft calculating and their construction elements.   



 

 

It’s typical to use mathematical models for creating calculating engineering 

methods.  Aircraft mathematical model consist of aircraft analytic model and 

calculating methods.   

Aircraft analytical model is an aircraft simplified representation (abstraction).  It 

is obtained due to efforts of aircraft geometric modeling, so the modeling of the 

outside world modeling and behavior material physical modeling.  
 

 

 

 
 

Aircraft design – layout plan analysis is carried out for geometrical modeling 

performing. The following geometric primitives are used during the analysis: a bar, 

a plate, a shell and a massive body. It’s essential to identify the construction elements 

structurally and to simulate them with primitives by analyzing the power flows. As 

an example, such construction elements as main body, aft end and tank simulate by 

force of shells and plates; boom, frame and connection elements is by force of bar;  

mating ring is by force of load cell and etc. Decomposition structure is carried out 

on this stage. The construction will consist of elements built by force of geometric 

primitives connected between themselves by means of inner forces. Inner forces 

come out like external loads. 

That’s why by performing the rocket layout analysis and item structure 

diagram analysis, the aircraft base structural decomposition is carried out.    The 

construction is divided into the line of separate elements and compartments (The 

decomposition is under performing). Herewith, the separate components interplay 

on each other is changed by the acts of power, moments that are dispatched through 

the attachment fittings and mating rings. Aircraft design layout can structurally be 

submitted in a form of: 

 



 

Element of 

space ship with 

aircraft 

1. Frame, aft end, 

adapter module, 

low-drag fairing. 

2. Boom, frame, 

longeron, frame 

structure. 

3.Booms 3.Fasteners 

Geometric 

model 

Shell, plate Bar Load cell Bolts, loft pins, cotter 

connections  

Loading 

environments 

Internal and 

external pressure, 

Axial force. 

Bending moment, 

Equated. Force. 

Axial force Bending 

moment, Force. 

 

Pressure, Axial 

force, Bending 

moment. 

Axial force, Bending 

moment. 

Outside world influence modeling: The outside world influenced on construction is 

being changed by the loads. They can be earth-fixed and in-flight. The main 

calculating ones is considered to be in-flight: operational in the instant of launch, 

load during the maximum air-velocity pressure, load during the staging, fairing 

ejection, in the case of cold vent. Each combination of these loads determines the 

simulation case. 

Accelerations can be focused, surfacing and three dimensional. Besides, there also 

can be active and reactive, statistic and dynamic ones. Any variable of static load 

can be dynamic and can be determined by its own vibration velocity. If external 

load vibration velocity equals two or three periods of its own velocity interval, then 

such kind load is called dynamic. If it is more than four or five, then the varying duty 

is called static. Damage summation is emerging in this case that leads to appearing 

of construction micro fissures (fatigue). If the influence time is lower than acoustical 

wave transmission time, so it’s called shocked. The main construction element will 

be plate and shell in the static loading conditions during the strength analysis course. 

Physical modeling material behavior is used for construction reaction and behavior 

describing for environments. Each model is determined by the material properties 

(heating and power loadings). Strain, creep, fatigue strength of mechanism thermal 

mechanical area is used for models design.  

 

2. Analysis with factored design loads. Strength conditions.  

 

 Stress, deformations and displacement calculation in construction from 

intended external operations make up the basic strength analysis task. 



 

 Nevertheless, deformations and stresses analysis in aircraft construction 

elements is not still giving an availability to judge about their integrity and rigidity.

 It’s required to have strength criterions that perform the balance between the 

integrity (stress, deformations, displacement etc.) balance in a form of chatter marks 

that determine the border between acceptable and unacceptable performances 

ranges. 

 In general mechanic engineering, for detail integrity, so having an availability 

of resisting failure, under that matter, the elastic theory is used the most widely. Let’s 

consider the example: a bar that is straining by «P». Strength condition: 

 
F

Pe
e

max  

 

where Pе - a limit load, F is a cross-section area,    - an 

acceptable load, from which the detail integrity is provided. 

Acceptable load forms part from the boundary stresses. 

 
n

пред
  

пред – boundary stress. Depending on the load character and 

requirements to the detail there can be: integrity limit в , liquid 

limit т  etc. n – material factor. e

max –  a maximum stress in a 

dangerous detail crossing that is determined by the limit load. 

  

 Strength analysis for most parts of construction are performed with factored 

design loads in rocket and space technique that are accomplished by the way of limit 

load multiplication on some normalization factor which is called the material factor 

and, in most cases, it is marks like «f».  

 Under the material factor is understood the number that is more than one and 

what kind of it you should multiply the limit load level in order to get the ultimate 

load. 

 Limit load is received due to results of ballistic, aerodynamic and other 

analysis. Thus, construction is designed to operation of increased loads by means of 

material factor appliance. This loads increasing results to balance of:  

 

- loads definition and lifting power inaccuracy by experimental and 

calculating way; 

- design parameters acceleration and material mechanical characteristics; 

- design models and methods proximity; 

- possible deviations in aircraft tabs and tanks manufacture technology; 

- possible deviations in operation conditions. 



 

 

 By all means, it’s not profitable to create the construction with big material 

factor, because they will have huge mass. At this time, structural breakup during the 

decreasing of material factor is possible. During the material factor definition it’s 

necessary to consider: 

- construction layout; 

- operating safe and unfailing performance necessary level; 

- loading character; 

- manufacturing process.  

 

 On this time to launch vehicle in flight conditions it’s taken f = 1,25...1,5; 

during ground running – f = 1,5...2(2,25). 

 

 Material factors are defined of running experience in accordance with strength 

strength standarts. 

 Special document is developed for each aircraft class. It’s called strength 

standarts that regiment safe coefficient value. 

 

Getting back to an example: 

Let’s suppose the failure to be connected with bar explosion. 

а) 

Allowable stress design: 
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Loads on aircraft that differ by nature are determined through different ways with 

various accuracy and probability of one or another load. That is why different loads 

make different f (It is settled by the strength standarts). Ultimate loads design allow 

to decrease the aircraft construction mass.  

 



 

Boundary stresses.  

  

 Breakup is a loss of functional particulars, meaning the coming up in such 

condition when the construction stops satisfying to its application because of one or 

another kind of circumstances.  

It’s required to consider construction element strength conditions during the 

definition:  

- its destination; 

- load condition; 

- demands that being taken for construction elements. 

Strength assessment consist of comparing the equivalent analytical stresses defined 

by one or another failure theory, with integrity limit в , with liquid limit 2,0  or 

endurance limit 1  depending from loading condition and demands to construction. 

If the compressive stresses appear in construction, so strength assessment on critical 

stresses is obligatory: крруйн  . 

Rigidness assessment is necessary for some construction elements, meaning the 

comparing of received moving values or deformations with boundary, which are 

defined according to field experience or another demands in such case.  For example, 

there are facilities that can be applied for space aircraft to which adjustment accuracy 

demands is defined. Provided that, it’s necessary for the deformations of some 

construction elements not lead to inadmissible displacement of these tools 

 
граничгранич  . 

 

Simulation cases 

Various loads work as a rule at one time during aircraft operation. For example, there 

is some drawing bar, internal pressure, gravity loads in one or a few ways. By the 

reason of thing that each load can change in time by its own law, so for each time 

moment the combining of these loads will be different. Structural integrity has to be 

practical enough during any loads combining, that is why it is essential to choose the 

most non-destructive one of these combinations for strength analysis and test 

operation.  

The aircraft integrity is guaranteed in all kinds of load cases by the way of 

analysis aircraft load test corresponding to simulation cases. 

 Commanding load principle is one of the most spreading ones of simulation 

cases determination. Simulation cases fit with time point when one of the loads has 

the maximum possible value. 

 This approach is appropriate for space aircraft analysis. But, there can be cases 

during the another manufactures analysis when the loads combination which of them 

will not have the biggest value is going to be the most dangerous.     The 

construction has to be rugged during the whole time of operation. The list of load 

simulation case is defined by analyzing the experience of aircraft creation and their 

operation for every element (cell). 

 

 



 

The sequence of aircraft constructions structural analysis.  

1. Layout and structure diagram learning. 

2. Heating and load modes analysis. 

3. Analysis of construction materials particulars in-service environment. 

4. Design model choice for construction strength assessment. 

5. Strain-stress state and construction lifting power calculation. 

6. а) Design calculation (the determination of geometric characteristics of 

construction mail elements).    

      б) Checking calculation (safety coefficient determination, conclusion about 

having enough or not enough structural integrity). 

      в) Lifting power definition (that boundary load which the element take without 

destruction). 

 

Aircraft mathematical model creation is based on foundation of mechanics 

general approach of solid body deformation. This approach offers the formulation 

of static, geometric and physical construction formulas. These formulas blended 

decision lets us determine the strain-stress state. We should consider these equations.  

 

Static equations: 

 
Let’s consider the construction that is situated in balance condition. Let’s choose 

infinitely small element in a view of parallelepiped with dimensions dx, dy, dz in 

construction arbitrary point. 

 



 

It’s as if dimensions and conditions are small and body forces operates on it in 

system of axes X, Y, Z. As all the construction is in balance, so the indivisible part 

is also in balance. Consider the balance condition of all forces sum that are headed 

towards х. Action stress is proportional at each area.  

 

𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 

𝜎𝑥𝑑𝑦𝑑𝑧 − (𝜎𝑥 +
𝜕𝜎𝑥
𝜕𝑥

𝑑𝑥) 𝑑𝑦𝑑𝑧 + 𝜏𝑧𝑥𝑑𝑥𝑑𝑦 − (𝜏𝑧𝑥 +
𝜕𝜏𝑧𝑥
𝜕𝑧

𝑑𝑧) 𝑑𝑥𝑑𝑦 + 𝜏𝑦𝑥𝑑𝑥𝑑𝑧

− (𝜏𝑦𝑥 +
𝜕𝜏𝑦𝑥

𝜕𝑦
𝑑𝑦)𝑑𝑥𝑑𝑧 + 𝑋𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

 

We are having this during reduction: 
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑧𝑥
𝜕𝑧

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+ 𝑋 = 0 

Next, likewise, we are making the balance equation towards Y и Z, and getting three 

balance formulas: 

 
𝜕𝜎𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝑌 = 0 

𝜕𝜎𝑧
𝜕𝑧

+
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+ 𝑍 = 0 

 

These differential equations are called static ones and are used during task solving 

of solid body deformation mechanics. Forming is happening during structural 

loading. It is determined in each point of displacement vector projection. 

Coming into view: u, v, w. 

𝑟 = 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘⃗⃗ 

Besides, fractional variations of linear and corner deformations are coming between 

nearly points: 

𝜀 =
𝐴∗𝐵∗ − 𝐴𝐵

𝐴𝐵
 

𝛾 =
Δ𝛼

α
 

Connection between displacement vector projection and relative strain is called 

geometrical correlation.  

 

Geometrical correlation. Let’s determine the correspondence between the 

displacement vector projectors u, v, w and fractional deformations. Now, consider 

the interval AВ with dimension dx that is in parallel with axis х. 



 

 
Under the influence of load point A (x,y,z) will get the displacement projection u, v, 

w. 

А∗(𝑥 + 𝑢; 𝑦 + 𝑣; 𝑧 + 𝑤) 

𝐵∗(𝑥 + 𝑑𝑥 + 𝑢 +
𝜕𝑢

𝜕𝑥
𝑑𝑥; 𝑦 + 𝑑𝑦 + 𝑣 +

𝜕𝑣

𝜕𝑦
𝑑𝑦; 𝑧 + 𝑑𝑧 + 𝑤 +

𝜕𝑤

𝜕𝑧
𝑑𝑧) 

𝐴∗𝐵∗ = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 

𝑥2 − 𝑥1 = 𝑑𝑥 (1 +
𝜕𝑢

𝜕𝑥
) 

𝑦2 − 𝑦1 =
𝜕𝑣

𝜕𝑥
𝑑𝑥          𝑧2 − 𝑧1 =

𝜕𝑤

𝜕𝑧
𝑑𝑧 

𝐴∗𝐵∗ = √𝑑𝑥2 (1 +
𝜕𝑢

𝜕𝑥
)
2
+ (

𝜕𝑣

𝜕𝑥
)2𝑑𝑥2 + (

𝜕𝑤

𝜕𝑧
)2𝑑𝑧2 =

𝑑𝑥√(1 +
𝜕𝑢

𝜕𝑥
)
2
+ (

𝜕𝑣

𝜕𝑥
)2 + (

𝜕𝑤

𝜕𝑧
)2 = 

=
𝑑𝑥√(1 +

𝜕𝑢
𝜕𝑥
)
2

+ (
𝜕𝑣
𝜕𝑥
)
2

+ (
𝜕𝑤
𝜕𝑧
)
2

− 𝑑𝑥

𝑑𝑥
= 

= √1 + 2
𝜕𝑢

𝜕𝑥
+ (

𝜕𝑢

𝜕𝑥
)
2
+ (

𝜕𝑣

𝜕𝑥
)
2
+ (

𝜕𝑤

𝜕𝑧
)
2
-1= (1 + 𝛼)𝑛 = 1 + 𝑛𝛼 +⋯ 

𝜕𝑢

𝜕𝑥
;
𝜕𝑣

𝜕𝑥
;
𝜕𝑤

𝜕𝑧
≪ 1 

𝛼 = 2
𝜕𝑢

𝜕𝑥
+ (

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

 

𝜀𝑥 = 1 +
1

2
2
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑢

𝜕𝑥
)
2

+
1

2
(
𝜕𝑣

𝜕𝑥
)
2

+
1

2
(
𝜕𝑤

𝜕𝑧
)
2

− 1 

 

In the long run, we are getting the following formulas: 

𝜀 𝑥
=
𝜕𝑢

𝜕𝑥
+
1

2
[(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

] 



 

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
+
1

2
[(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

] 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
+
1

2
[(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

] 

 

This general correlation is fairly for geometrically nonlinear tasks. Small 

deformations are being considered in the structural analysis course, then the second-

order infinitesimal is being neglected, so we are getting: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
                 𝜀𝑦 =

𝜕𝑣

𝜕𝑦
             𝜀𝑧 =

𝜕𝑤

𝜕𝑧
 

 
Let’s consider the angular variation of dimensions during the deformation. 

𝛾 = 𝛾1 + 𝛾2 

𝑡𝑔𝛾2 ≈ 𝛾2 =
𝑣 +

𝜕𝑣
𝜕𝑥
𝑑𝑥 − 𝑣

𝑢 +
𝜕𝑢
𝜕𝑥
𝑑𝑥 − 𝑢 + 𝑑𝑥

= 

=

𝜕𝑣
𝜕𝑥
𝑑𝑥

𝜕𝑢
𝜕𝑥
𝑑𝑥 + 𝑑𝑥

=

𝜕𝑣
𝜕𝑥

𝜕𝑢
𝜕𝑥
+ 1

≈
𝜕𝑣

𝜕𝑥
 

𝜕𝑢

𝜕𝑥
≪ 1 

𝑡𝑔𝛾1 ≈ 𝛾1 =
𝑢 +

𝜕𝑢
𝜕𝑦
𝑑𝑦 − 𝑢

𝑣 +
𝜕𝑣
𝜕𝑦
𝑑𝑦 − 𝑣 + 𝑑𝑦

=

𝜕𝑢
𝜕𝑦
𝑑𝑦

𝜕𝑣
𝜕𝑦
𝑑𝑦 + 𝑑𝑦

=
𝜕𝑦

𝜕𝑦
 

As the final results, we will get the following: 

𝛾𝑥𝑦 =
𝜕𝑦

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

𝛾𝑦𝑧 =
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
 

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
 



 

 

In general, the connection between u, v, w is defined by 6 geometrical equations: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
                                            𝛾𝑥𝑦 =

𝜕𝑦

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
                                             𝛾𝑦𝑧 =

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
                                       𝛾𝑥𝑧 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
 

Each material has its own properties. We will be considering the material that 

possesses of uniformity, smoothness, perfect elasticity and isotropy in structural 

analysis course. The connections of material properties with stresses and 

deformation is defined by physical formulas.  

Physical formulas 

The connection between the stress and deformation is defined with the assistance of 

Hook’s law formulas: 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜇(𝜎𝑦 + 𝜎𝑧)) 

𝜀𝑦 =
1

𝐸
(𝜎𝑦 − 𝜇(𝜎𝑥 + 𝜎𝑧)) 

𝜀𝑧 =
1

𝐸
(𝜎𝑧 − 𝜇(𝜎𝑦 + 𝜎𝑥)) 

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦 

𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 

𝜏𝑧𝑥 = 𝐺𝛾𝑧𝑥 

 

Where 

𝜇 =
𝜀1
𝜀

 

𝐺 =
𝐸

2(1 + 𝜇)
− 𝑒𝑙𝑒𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝐼𝐼 𝑡𝑦𝑝𝑒 

Quasi-static statement of thermal action consideration is used in case of temperature 

field, so the deformation will equal to zero of deformations forces. 

 

The solving of any mechanics task of solid body deformation is being based on 

blended decision of 15 equations system and finding the 15 unknown ones: 6 

physical equations, 6 geometrical and 3 static. 

Plate theory 

 

Plate is a body confined by two parallel planes the distance between ones is 

far smaller than the dimensions in the drawing.  

Geometric multitude of points equidistant from subspace generator is called 

median surface.  

 



 

Following equations should be solved for 

defining the stress state: 

 

 

 

 

1. Static equations 

 

{
 
 

 
 
𝜕𝜎𝑥

𝜕𝑥
+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑧

𝜕𝑧
+ 𝑥 = 0

𝜕𝜏𝑦𝑥

𝜕𝑥
+
𝜕𝜎𝑦

𝜕𝑦
+
𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝑦 = 0

𝜕𝜏𝑧𝑥

𝜕𝑥
+
𝜕𝜏𝑧𝑦

𝜕𝑦
+
𝜕𝜎𝑧

𝜕𝑧
+ 𝑧 = 0

  

 

2. Geometric equations 

 

{
 
 

 
 𝜀𝑥 =

𝜕𝑢

𝜕𝑥

𝜀𝑦 =
𝜕𝑣

𝜕𝑦

−𝜀𝑧 =
𝜕𝑤

𝜕𝑧

        

{
 
 

 
 𝛾𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

−𝛾𝑦𝑧 =
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

−𝛾𝑧𝑥 =
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧

 

 

3. Physical formulas 

 

{
 
 

 
 𝜀𝑥 =

1

𝐸
× (𝜎𝑥 − 𝜇 × (𝜎𝑦 + 𝜎𝑧))

𝜀𝑦 =
1

𝐸
× (𝜎𝑦 − 𝜇 × (𝜎𝑥 + 𝜎𝑧))

𝜀𝑧 =
1

𝐸
× (𝜎𝑧 − 𝜇 × (𝜎𝑥 + 𝜎𝑦))

    

{
 
 

 
 𝛾𝑥𝑦 =

𝜏𝑥𝑦

𝐺

−𝛾𝑦𝑧 =
𝜏𝑦𝑧

𝐺

−𝛾𝑧𝑥 =
𝜏𝑧𝑥

𝐺

   , где 𝐺 =
𝐸

2×(𝜇+1)
 

Suppositions are used for plates calculating: 

 

 a normal interval mn with plate loading does not change its length.. 

 a normal interval mn before and after loading remains the normal one. 

 Normal stresses in the plane that are parallel to median surface are being 

neglected. 

These suppositions are called Kitchhoff hypothesis. They let us simplified 

the geometric, physical and static equations. 

 

1) 𝜀𝑧 = 0     ⇨     𝜀𝑧 =
𝜕𝑤

𝜕𝑧
= 0    ⇨     w=const   ⇨     w=w(x;y) –deflection 

2) 𝛾𝑥𝑧 = 0   ⇨  𝛾𝑧𝑥 =
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
= 0  ⇨   

𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑧
  ⇨ 𝑢(𝑥; 𝑦) = 𝑢0(𝑥; 𝑦) − 𝑧 ×

𝜕𝑤

𝜕𝑥
  



 

𝛾𝑦𝑧 = 0   ⇨  𝛾𝑦𝑧 =
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
= 0 ⇨   

𝜕𝑣

𝜕𝑧
=

𝜕𝑤

𝜕𝑦
   ⇨ 𝑣(𝑥; 𝑦) = 𝑣0(𝑥; 𝑦) − 𝑧 ×

𝜕𝑤

𝜕𝑦
 

The suppositions allow us to imagine the plate deformation process through 

the plate median surface deformation, through u0, v0  and deflection criterion w. 

 

By dint of suppositions, the physical equations transmute into: 

 

 

{
 
 

 
 𝜀𝑥 =

1

𝐸
× (𝜎𝑥 − 𝜇 × (𝜎𝑦 + 𝜎𝑧))

𝜀𝑦 =
1

𝐸
× (𝜎𝑦 − 𝜇 × (𝜎𝑥 + 𝜎𝑧))

𝜏𝑥𝑦 =
𝐸

2×(1−𝜇2)
× (1 − 𝜇) × 𝛾𝑥𝑦

 

 

Now, we will apply the geometric formulas to the equations for stresses: 

 

{
 
 

 
 𝜀𝑥 =

𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧 ×

𝜕2𝑤

𝜕𝑥2

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
=

𝜕𝑣0

𝜕𝑦
− 𝑧 ×

𝜕2𝑤

𝜕𝑦2

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
+
𝜕𝑣0

𝜕𝑦
− 2 × 𝑧 ×

𝜕2𝑤

𝜕𝑥𝜕𝑦

  

𝜎𝑥 =
𝐸

(1 − 𝜇2)
× (

𝜕𝑢0
𝜕𝑥

− 𝑧 ×
𝜕2𝑤

𝜕𝑥2
+ 𝜇 ×

𝜕𝑣0
𝜕𝑦

− 𝜇 × 𝑧 ×
𝜕2𝑤

𝜕𝑦2
)

=
𝐸

(1 − 𝜇2)
× (𝜀0𝑥 + 𝜇𝜀0𝑦 − 𝑧 ×  ×

𝜕2𝑤

𝜕𝑥2
− 𝜇 × 𝑧 ×

𝜕2𝑤

𝜕𝑦2
) 

𝜎𝑦 =
𝐸

(1 − 𝜇2)
× (

𝜕𝑣0
𝜕𝑦

− 𝑧 ×
𝜕2𝑤

𝜕𝑦2
+ 𝜇 ×

𝜕𝑢0
𝜕𝑥

− 𝜇 × 𝑧 ×
𝜕2𝑤

𝜕𝑥2
)

=
𝐸

(1 − 𝜇2)
× (𝜀0𝑦 + 𝜇 × 𝜀0𝑥 −−𝑧 ×

𝜕2𝑤

𝜕𝑦2
− 𝜇 × 𝑧 ×

𝜕2𝑤

𝜕𝑥2
) 

𝜏𝑥𝑦 = 𝜀0𝑥𝑦 − 2 × 𝑧 ×
𝜕2𝑤

𝜕𝑥𝜕𝑦
  

 

These applications show the deformation of any plate point and corresponding 

stresses can be evaluated through deformation and stresses in the median surface, 

and also coordinate values z, which defines the deformations and stresses criterions 

through bending and rotational moment criterions.  

 

Let’s put in the criterions of line loads and moments for median surface: 

 



 

𝑁𝑥 = ∫ 𝜎𝑥𝑑𝑧 =
𝐸

1 − 𝜇2
× ∫ [𝜀0𝑥 + 𝜇𝜀0𝑦 − 𝑧 ×

𝜕2𝑤

𝜕𝑥2
− 𝜇 × 𝑧 ×

𝜕2𝑤

𝜕𝑦2
]

𝛿
2

−
𝛿
2

𝛿
2

−
𝛿
2

× 𝑑𝑧

=
𝐸

1 − 𝜇2
 ×  [(𝜀0𝑥 + 𝜇𝜀0𝑦) × 𝑧|

𝛿

2

−
𝛿

2

− (
𝜕2𝑤

𝜕𝑥2
− 𝜇 ×

𝜕2𝑤

𝜕𝑦2
) ×

𝑧2

2
|

𝛿

2

−
𝛿

2

]

=
𝐸 × 𝛿

(1 − 𝜇2)
× (𝜀0𝑥 + 𝜇𝜀0𝑦) 

Analogically 𝑁𝑦 and 𝑁𝑥𝑦. 

 

𝑀𝑥 = ∫ 𝜎𝑥 × 𝑧 × 𝑑𝑧
𝛿

2

−
𝛿

2

= 
𝐸

1−𝜇2
× ∫ [𝜀0𝑥 + 𝜇𝜀0𝑦 − 𝑧 ×

𝜕2𝑤

𝜕𝑥2
− 𝜇 × 𝑧 ×

𝛿

2

−
𝛿

2

𝜕2𝑤

𝜕𝑦2
] × 𝑧 × 𝑑𝑧 =  =

𝐸

1−𝜇2
 × [(𝜀0𝑥 + 𝜇𝜀0𝑦) ×

𝑧2

2
|

𝛿

2

−
𝛿

2

− (
𝜕2𝑤

𝜕𝑥2
− 𝜇 ×

𝜕2𝑤

𝜕𝑦2
) ×

𝑧3

3
|

𝛿

2

−
𝛿

2

] = −
𝐸×𝛿3

12×(1−𝜇2)
× (−

𝜕2𝑤

𝜕𝑥2
+ 𝜇 ×  ×

𝜕2𝑤

𝜕𝑦2
) 

 

Analogically 𝑀𝑦 and  𝑀𝑥𝑦. 

 

Then, we are getting the criterions for line loads and moments for the median 

surface: 

 

{
 
 
 
 
 

 
 
 
 
 𝑁𝑥 =

𝐸×𝛿

(1−𝜇2)
× (𝜀0𝑥 + 𝜇𝜀0𝑦)

𝑁𝑦 =
𝐸×𝛿

(1−𝜇2)
× (𝜀0𝑦 + 𝜇𝜀0𝑥)

𝑁𝑥𝑦 =
𝐸×𝛿

(1−𝜇2)
× (1 − 𝜇) × 𝛾𝑥𝑦

𝑀𝑥 = −
𝐸×𝛿3

12×(1−𝜇2)
× (−

𝜕2𝑤

𝜕𝑥2
+ 𝜇 ×

𝜕2𝑤

𝜕𝑦2
)

𝑀𝑦 = −
𝐸×𝛿3

12×(1−𝜇2)
× (−

𝜕2𝑤

𝜕𝑦2
+ 𝜇 ×

𝜕2𝑤

𝜕𝑥2
)

𝑀𝑥𝑦 = −
𝐸×𝛿3

12×(1−𝜇2)
× (1 − 𝜇) ×

1

2
×

𝜕2𝑤

𝜕𝑥𝜕𝑦

  

 

These equations show that line loads taking place in plate can be separated 

into two independent components: first three equations are a definition of median 

surface deformations, and the next three ones are deformations definition forced by 

bend.  

 



 

𝐸×𝛿

(1−𝜇2)
= 𝐵 – compressive and extensional stiffness by median surface. 

 
𝐸×𝛿3

12×(1−𝜇2)
= 𝐷 – bending stiffness. 

 

This application lets us consider the static side of task solving in a view of 

median surface infinitesimal area balance with dimension 𝑑𝑥 × 𝑑𝑦. 

 

 

 
 

Now, we are getting all the strengths forced in the direction of Ох: 

∑𝑥 ∶= −𝑁𝑥𝑑𝑦 − 𝑁𝑥𝑦𝑑𝑥 + 𝑁𝑥𝑦𝑑𝑥 +
𝜕𝑁𝑥𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦 +𝑁𝑥𝑑𝑦 +

𝜕𝑁𝑥
𝜕𝑥

𝑑𝑥𝑑𝑦

+ 𝑞𝑥𝑑𝑥𝑑𝑦 = 0 
𝜕𝑁𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
+ 𝑞𝑥 = 0  

 

To Oy:                   
𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
+ 𝑞𝑦 = 0  

 

To Oz:                
𝜕𝑄𝑥

𝜕𝑥
+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑞𝑧 = 0  

 

So, analogically, the all moments sum: 

 

To Ox:           
𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 +𝑀𝑥 = 0  

 

To Oy:          
𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑄𝑦 +𝑀𝑦 = 0  

 

Static equations that define the plate internal forces are determined by 5 

formulas which are mentioned above. Problem solving in the plate strain-stress state 



 

in defined by 17 formulas. This system can conditionally be imagined in a view of 

two independent loadings sum. 

 First loading corresponds to median surface deformation (tensile, 

compressive, shear). The second one is to median surface shear. This system is 

divided into the systems of 8 and 9 formulas. 

 

 

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝑁𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
+ 𝑞𝑥 = 0

𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
+ 𝑞𝑦 = 0

𝑁𝑥 = 𝐵 × (𝜀0𝑥 + 𝜇𝜀0𝑦)

𝑁𝑦 = 𝐵 × (𝜀0𝑦 + 𝜇𝜀0𝑥)

𝑁𝑥𝑦 =
𝐵×(1−𝜇)

2
× 𝛾𝑥𝑦

𝜀0𝑥 =
𝜕𝑢0

𝜕𝑥

𝜀0𝑦 =
𝜕𝑣0

𝜕𝑦

𝛾𝑥𝑦 =
𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥

 – tensile, compressive, shear. 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 +𝑀𝑥 = 0

𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑄𝑦 +𝑀𝑦 = 0

𝜕𝑄𝑥

𝜕𝑥
+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑞𝑧 = 0

𝑀𝑥 = 𝐷 × (𝜒𝑥 + 𝜇 × 𝜒𝑦)

𝑀𝑦 = 𝐷 × (𝜒𝑦 + 𝜇 × 𝜒𝑥)

𝑀𝑥𝑦 =
𝐷×(1−𝜇)

2
× 𝜒𝑥𝑦

𝜒𝑥 = −
𝜕2𝑤

𝜕𝑥2

𝜒𝑦 = −
𝜕2𝑤

𝜕𝑦2

𝜒𝑥𝑦 = −2 ×
𝜕2𝑤

𝜕𝑥𝜕𝑦

 – bend 

. 

 

These mathematics allow us to define the stresses through inner forces: 

 

 



 

{
 
 

 
 𝜎𝑥(𝑧) =

𝑁𝑥

𝛿
+
12×𝑀𝑥

𝛿3
× 𝑧

𝜎𝑦(𝑧) =
𝑁𝑦

𝛿
+
12×𝑀𝑦

𝛿3
× 𝑧

𝜏𝑥𝑦(𝑧) =
𝑁𝑥𝑦

𝛿
+
12×𝑀𝑥𝑦

𝛿3
× 𝑧

 – stresses through line loads. 

 

 

The received arrangements show: 

 

1) plate tensile, compressive, shear leads to median surface deformation; 

2) deformation at any point of plate is defined through median surface 

deformation u0, v0 and crowning value. All points of plate are situated 

on median surface normal and have the same droop; 

3) all plate layers paralleled to median surface are situated in the plane 

stress state condition; 

4) stresses called by bend, in the point of median surface normal are 

changed according to linear law. 

 

 

 

 

 

 

This theory is fair and has the experimental evidence for thickness attitude to 

the smallest plan size:  

 

  
𝛿

𝑎
≤ 0.2 

 

If the behavior of droop to thickness 
𝑤

𝛿
< 0.5, so the bending moments are 

dominating, and 𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔 gives the linear dependence,  but 𝜎𝑡𝑒𝑛𝑠𝑖𝑙𝑒 ≈ 0. If 
𝑤

𝛿
> 0.5, 

so this is membrane: 𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔 ≈ 0, and 𝜎𝑡𝑒𝑛𝑠𝑖𝑙𝑒 = 𝑐𝑜𝑛𝑠𝑡. 



 

       

 Rectangular plate bend. Lagrange’s equation. 

 

Let’s consider the rectangular plate with dimensions 𝑎 × 𝑏, thickness δ, that is situated 

under effect of line load qz. The plate is fastened and is situated in the balance conditions.  

 

 
 

It is required to solve the system including 9 formulas with 9 indeterminate ones for the 

plate stress state defining. Static, physical and geometric equations are entered into this system.   

 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 +𝑀𝑥 = 0

𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑄𝑦 +𝑀𝑦 = 0

𝜕𝑄𝑥

𝜕𝑥
+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑞𝑧 = 0

𝑀𝑥 = 𝐷 × (𝜒𝑥 + 𝜇 × 𝜒𝑦)

𝑀𝑦 = 𝐷 × (𝜒𝑦 + 𝜇 × 𝜒𝑥)

𝑀𝑥𝑦 =
𝐷×(1−𝜇)

2
× 𝜒𝑥𝑦

𝜒𝑥 = −
𝜕2𝑤

𝜕𝑥2

𝜒𝑦 = −
𝜕2𝑤

𝜕𝑦2

𝜒𝑥𝑦 = −2 ×
𝜕2𝑤

𝜕𝑥𝜕𝑦

 

𝜒𝑥, 𝜒𝑦 – the changing of median surface crookedness. 

𝜒𝑥𝑦 – median surface torsion. 

 

 

           Now, let’s solve this system. 

 

𝑄𝑥 =
𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
  →    

𝜕𝑄𝑥

𝜕𝑥
=

𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
  

𝑄𝑦 =
𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
  →    

𝜕𝑄𝑦

𝜕𝑦
=

𝜕2𝑀𝑦

𝜕𝑦2
+
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
  

𝜕2𝑀𝑥

𝜕𝑥2
+ 2 ×

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 𝑞𝑧 = 0  

𝑀𝑥 = 𝐷 × (−
𝜕2𝑤

𝜕𝑥2
+ 𝜇 ×

𝜕2𝑤

𝜕𝑦2
)  

𝜕2𝑀𝑥

𝜕𝑥2
= 𝐷 × (−

𝜕4𝑤

𝜕𝑥4
+ 𝜇 ×

𝜕4𝑤

𝜕𝑦2𝜕𝑥2
)  

𝑀𝑦 = 𝐷 × (−
𝜕2𝑤

𝜕𝑦2
− 𝜇 ×

𝜕2𝑤

𝜕𝑥2
)  



 

𝜕2𝑀𝑦

𝜕𝑦2
= 𝐷 × (−

𝜕4𝑤

𝜕𝑦4
− 𝜇 ×

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
)  

𝑀𝑥𝑦 = 𝐷 × (1 − 𝜇) × (−
𝜕2𝑤

𝜕𝑥𝜕𝑦
)  

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
= 𝐷 × (1 − 𝜇) × (−

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
)  

𝐷 × (−
𝜕4𝑤

𝜕𝑥4
+ 𝜇 ×

𝜕4𝑤

𝜕𝑦2𝜕𝑥2
) + 2 × 𝐷 × (1 − 𝜇) × (−

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
) + 𝐷 × (−

𝜕4𝑤

𝜕𝑦4
− 𝜇 ×

           ×
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
) + 𝑞𝑧 = 0  

𝐷 × [−
𝜕4𝑤

𝜕𝑥4
+ 𝜇 ×

𝜕4𝑤

𝜕𝑦2𝜕𝑥2
− 2 ×

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 2 × 𝜇 ×

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
−
𝜕4𝑤

𝜕𝑦4
− 𝜇 ×

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
] + 𝑞𝑧 = 0   

𝜕4𝑤

𝜕𝑥4
+ 2 ×

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
=

𝑞𝑧

𝐷
  - Lagrange’s equation. 

 

This equation determines the whole class of bend rectangular plate issues. The concrete 

settlement is defined by a view of specified boundary conditions: 

 

1) Fixing. It is equivalent to the demand that the droop value and angular deflection 

in fixing is equal to zero: 

 

 

𝑥 = 𝑐𝑜𝑛𝑠𝑡 и  𝑤 = 0  →   
𝑑𝑤

𝑑𝑥
= 0  

𝑦 = 𝑐𝑜𝑛𝑠𝑡 и  𝑤 = 0  →   
𝑑𝑤

𝑑𝑦
= 0  

{
 
 

 
 𝜎𝑥 =

12×𝑀𝑥

𝛿3
× 𝑧

𝜎𝑦 =
12×𝑀𝑦

𝛿3
× 𝑧

𝜏𝑥𝑦 =
12×𝑀𝑥𝑦

𝛿3
× 𝑧

  

 
2) Hinged-fixed fixing. 

 

 

𝑥 = 𝑐𝑜𝑛𝑠𝑡 и  𝑤 = 0 и 𝑀𝑥 = 0 →  
𝜕2𝑤

𝜕𝑥2
= 0    



 

𝑦 = 𝑐𝑜𝑛𝑠𝑡 и  𝑤 = 0 и 𝑀𝑦 = 0 →  
𝜕2𝑤

𝜕𝑦2
= 0  

 

 

1) Plate free edge.  

 

 

{

𝜎𝑥 = 0
𝜎𝑦 = 0

𝜏𝑥𝑦 = 0
   →    {

𝑄𝑥 = 0
𝑀𝑥 = 0
𝑀𝑥𝑦 = 0

  

 

 

The rotational moment value 𝑀𝑥𝑦 is changed by spread load in a view of force couple 

during the plate free edge analyzing: 

 

 

𝑄∗ =
𝜕𝑀𝑥𝑦

𝜕𝑦
  

Let’s change the rotational moment 𝑀𝑥𝑦 by force couples on a free edge that equivalent to 

adding shear force operating 𝑄∗. 
 

𝑥 = 𝑐𝑜𝑛𝑠𝑡 и  𝑀𝑥 = 0 →    𝑄
∗∗ = 𝑄𝑥 + 𝑄

∗  

𝑦 = 𝑐𝑜𝑛𝑠𝑡 и  𝑀𝑦 = 0 →    𝑄
∗∗ = 𝑄𝑦 + 𝑄

∗  

 

 

Calculation algorithm of plate stiffness task that works during the bend 

 

1. Lagrange’s equation is solved with specified boundary conditions of plate fixing.  

Crowning value w is determined at any point of plate median surface. 

2. Crookedness changing value and torsion median surface is defined according to 

known crowning w and geometrical formulas. 

3. Inner line forces 𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 is defined according to median surface geometrics. 

4. Normal and shearing stresses 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦 are defined according to known inner 

forces at each point of plate. 

5. Critical points are determined according to known stresses and inner forces. 

Equivalent stresses are defined with the assistance of strength theory for the critical 



 

points and the functional capacity is being checked. Rigidity checking is carried out 

according to maximum deflection value w. 

Plate planar loading 
 

May it be some plate with the constant thickness h. The plane is stretched by known line 

loads 𝑁0
𝑥 и 𝑁0

𝑦
 across the median surface. Let’s consider that there are not any external loads at 

all. Plate stress condition is defined as a result of blended decision of static, geometric and physical 

equations. 

 

 

 
 

{
 
 

 
 𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 0

𝜕𝑁𝑦
𝜕𝑦

+
𝜕𝑁𝑥𝑦
𝜕𝑥

= 0

 

{
  
 

  
 𝜀𝑥 =

𝜕𝑢

𝜕𝑥

𝜀𝑦 =
𝜕𝑣

𝜕𝑦

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

 

 

 

{
 
 

 
 𝜀𝑥 =

1

𝐸
× (𝜎𝑥 − 𝜇 × 𝜎𝑦)

𝜀𝑦 =
1

𝐸
× (𝜎𝑦 − 𝜇 × 𝜎𝑥)

𝛾𝑥𝑦 =
𝐸

2 × (1 + 𝜇)
× 𝜏𝑥𝑦

 

 

                    

{
 
 

 
 𝜎𝑥 =

𝐸×ℎ

2×(1−𝜇2)
× (𝜀𝑥 + 𝜇 × 𝜀𝑦)

𝜎𝑦 =
𝐸×ℎ

2×(1−𝜇2)
× (𝜀𝑦 + 𝜇 × 𝜀𝑥)

𝜏𝑥𝑦 =
𝐸×ℎ

2×(1+𝜇)
× 𝛾𝑥𝑦

               𝐵 =
𝐸×ℎ

2×(1−𝜇2)
 

 

𝑁𝑥 = 𝐵 × ℎ × (𝜀𝑥 + 𝜇 × 𝜀𝑦) 

𝑁𝑦 = 𝐵 × ℎ × (𝜀𝑦 + 𝜇 × 𝜀𝑥) 



 

𝑁𝑥𝑦 =
𝐵

2
× (1 − 𝜇) × ℎ × 𝛾𝑥𝑦 

 

                       𝜀𝑥 →
𝜕2

𝜕𝑦2
                   

𝜕3𝑢

𝜕𝑥𝜕𝑦2
=

𝜕2𝜀𝑥

𝜕𝑦2
 

                       𝜀𝑦 →
𝜕2

𝜕𝑥2
                   

𝜕3𝑣

𝜕𝑦𝜕𝑥2
=

𝜕2𝜀𝑦

𝜕𝑥2
 

                      𝛾𝑥𝑦 →
𝜕2

𝜕𝑥𝜕𝑦
                

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+

𝜕3𝑣

𝜕𝑦𝜕𝑥2
=

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
 

 

Now, let’s modify the last equations into the formulas for 𝑁𝑥, 𝑁𝑦 and  𝑁𝑥𝑦 

 

{
 
 

 
 𝜀𝑥 =

1

𝐵 × ℎ
× (𝑁𝑥 − 𝜇 × 𝑁𝑦)

𝜀𝑦 =
1

𝐵 × ℎ
× (𝑁𝑦 − 𝜇 × 𝑁𝑥)

𝛾𝑥𝑦 =
1

𝐵 × ℎ × (1 − 𝜇)
× 2 × 𝑁𝑥𝑦

 

 

𝜕2

𝜕𝑦2
× (𝑁𝑥 − 𝜇 × 𝑁𝑦) +

𝜕2

𝜕𝑥2
× (𝑁𝑦 − 𝜇 × 𝑁𝑥) = 2 × (1 − 𝜇) ×

𝜕2𝑁𝑥𝑦
𝜕𝑥𝜕𝑦

 

 

 

Airy stress functions are used for solving of 3 equations with 3 indeterminate ones.  

 

 

𝑁𝑥 =
𝜕2𝜑

𝜕𝑦2
                 𝑁𝑦 =

𝜕2𝜑

𝜕𝑥2
                𝑁𝑥𝑦 =

𝜕2𝜑

𝜕𝑥𝜕𝑦
 

 

The system of three formulas goes to 1 during Airy function substitution.  

 

𝜕4𝜑

𝜕𝑦4
+ 2 ×

𝜕4𝜑

𝜕𝑥2𝜕𝑦2
+
𝜕4𝜑

𝜕𝑥4
= 0 

 

The solving of this differential equation is based on specified boundary conditions. Airy 

functions are taken in a view of quadratic dependence of specified line loads 𝑁0
𝑥 и 𝑁0

𝑦
. 

 

𝜑 =
1

2
× 𝑁0

𝑥 × 𝑦2 +
1

2
× 𝑁0

𝑦
× 𝑥2 − 𝑁0

𝑥𝑦
× 𝑥 × 𝑦 

 

This law is good for flat plate and membranes. 

  

𝑢 =
𝑥

𝐵 × ℎ
× (𝑁0

𝑥 − 𝜇 × 𝑁0
𝑦
) 

 

Line loads 𝑁𝑥, 𝑁𝑦 и 𝑁𝑥𝑦 are defined for construction strength analysis through Airy 

functions, and then the stresses will be: 

 



 

{
  
 

  
 𝜎𝑥 =

𝑁0
𝑥

ℎ

𝜎𝑦 =
𝑁0
𝑦

ℎ

𝜏𝑥𝑦 =
𝑁0
𝑥𝑦

ℎ

 

 

The found line loads are substitute in geometric formulas and take integral for deformations 

defining, and then, we get:  

 

𝑢 =
𝑥

𝐵 × ℎ
× (𝑁0

𝑥 − 𝜇 × 𝑁0
𝑦
) +

1

𝐵 × ℎ
×

𝑁0
𝑥𝑦

(1 − 𝜇)
× 𝑦 

𝑣 =
𝑥

𝐵 × ℎ
× (𝑁0

𝑦
− 𝜇 × 𝑁0

𝑥) +
1

𝐵 × ℎ
×

𝑁0
𝑥𝑦

(1 − 𝜇)
× 𝑥 

 

The found displacement fields let us define the placement of each point of flat plate that is 

situated in plane-stress state conditions. 𝑢 and 𝑣 are used  for plate stiffness. 

 

 

Circumgyration shell theory . General terms and defenitions 

 

Rotational shell is risen as a result of moving line rotation towards the axis of symmetry.  
 

 

Circumgyration shell theory. General terms and defenitions 

 
Rotary shell is risen as a result of moving line rotation towards symmetry axis. 

 

 
Geometrically, rotary shell can be defined force of 3-dimensional reference axis, which unit 

vectors are coincided with the moving line direction to circular meridians (parallels).  Rotary shells 

are defined by thickness and curvature: R1-moving line radius or meridian, R2 – curvature radius 

circumferential direction or parallel. Curvature radios allow us to calculate any point of rotary 

shell. R1 and R2 are dependent quantities.  



 

 
𝑑𝑆𝛼 = 𝑅1𝑑𝛼 

sin 𝛼 =
𝑑𝑥

𝑑𝑆𝛼
 

cos 𝛼 =
𝑑𝑟

𝑑𝑆𝛼
 

𝑅2 sin 𝛼 = 𝑟 

𝑑𝑟 = cos 𝛼 𝑑𝑆𝛼 = cos 𝑅1 𝑑𝛼 

𝑑(𝑅2 sin 𝛼) = 𝑅1 cos 𝛼 𝑑𝛼 
𝑑

𝑑𝛼
(𝑅2 sin 𝛼) = 𝑅1 cos 𝛼𝑑𝛼 

 

Let’s consider the real shells example: 

 

Sphere: 

 
R1=R2=R 

 

Cylinder: 

 



 

 

R2=Rcylinder=R ,                   R1=∞ 

 

Cone: 

 

 
R1=∞ 

R1= 
𝑟

cos𝛼
 

 

If the shell is more complex (ellipsoid): 

1

ρ
=

d2y
dx2

(1 + (
dy
dx
)
2

)

3  

 

 

Torus shell: 

 

 
 

R1=R 



 

R2 = R1 +
𝑎

sin 𝛼
 

Shells strain-stress state analysis is carried out by force of simplified deformation. Allowances are 

used for this matter that are based on Kirchhoff hypothesis: 

 

1. The normal line of a middle surface of a shell before and after loading remains the normal 

one.  

2. The normal interval of a median surface doesn’t change its length.  

3. The normal stresses on the surfaces that parallel to the median surface are little and they 

are being neglected.   

These allowances like in plate theory change the dimension of a problem into identify element 

(meaning the initial 3 – dimensional size turns into the two dimensional). Stress state can be 

imagined in a form of: 

 

1. Momentless state; 

2. The stress state called by bending moment. 

 

 

Let’s consider the axially-symmetric loaded cylinder. 

 

 
 

In case of the axially-symmetric loaded construction, shearing line axes Nαβ and Mαβ equal to 

zero, Nβ and Mβ don’t depend on coordinate β, but they are constant. The stress can be 

described like a sum of zero-torque ones and with a moment one. The first stress is constant 

and the second one is varying during the zero-torque stress state. Moment state always takes 

place in the area of strengths and moments local action. Issues simplified solution is used 

during the structural design. 

Now, we will consider the zero-torque stress state and determine the critical parameters of 

construction functional capability. In the general case a most definitive construction will be 

the one which don’t have any strengths and moments localized concentrators, so this is a shell 

working in moment less state. The details are confirmed by experiment. 

 

 

Let’s consider the cylindrical shell that has a dome head and being loaded by internal 

pressure.  



 

 
 

The moment state has an influence to minor parts of construction. The most of construction 

works zero-torque loading conditions and define through calculation is carried out after all 

about this, which takes into account the influence of bending moments from concentrated 

loads.  

 

Let’s consider the shell analysis with zero-torque theory. 

Momentless shells theory. Static equations.  

 

 

Let’s consider the rotary shell loaded axially-symmetrical. In this case of loading, the 

deformation is happening that is defined by constancy rotationally not being depended on angle 

β. That means Nβ doesn’t depend on angle β.  

Rotary shell in the balance conditions.  

 
Now, write down the equilibrium criterion: the number of all strengths to axis х and set to zero. 

∑𝑥: − 2𝜋𝑟0𝑁𝛼0 sin 𝛼0 + 2𝜋𝑟𝑁𝛼 sin 𝛼 + ∫(𝜌𝑐𝑜𝑠𝛼 − 𝑞𝑠𝑖𝑛𝛼)2𝜋𝑟𝑑𝛼 = 0

𝛼

𝛼0

 

𝑁𝛼 =
1

𝑟𝑠𝑖𝑛𝛼
[− ∫(𝜌𝑐𝑜𝑠𝛼 − 𝑞𝑠𝑖𝑛𝛼)2𝜋𝑟𝑑𝛼

𝛼

𝛼0

+ 𝑟0𝑁𝛼0𝑠𝑖𝑛𝛼0] 



 

 

If the shell is closed, so 𝑁𝛼0 = 0 и 𝑁𝛼 =
1

𝑟𝑠𝑖𝑛𝛼
∫ (𝜌𝑐𝑜𝑠𝛼 − 𝑞𝑠𝑖𝑛𝛼)2𝜋𝑟𝑑𝛼
𝛼

𝛼0
 

Let’s consider the second balance equation: the number of all strengths to a normal line and 

median surface is equal zero. Line loads will be appearing on the edges of this infinitesimal 

area.  

 

 
𝑑𝑆2 = 𝑅1𝑑𝛼 

𝑑𝑆𝛽 = 𝑟𝑑𝛽 

𝑟 = 𝑅2sinα 

 

May this shell be loaded by internal pressing Р. The thickness is constant and equals δ. Line loads 

will be appearing in the conditions of this symmetrical acceleration to the sides of infinitesimally 

small dSα dSβ. 

Axially symmetric load case defines that Nα and Nβ doesn’t depend on circumferential coordinate.  

Let’s consider the forces that operate on lower and top edges for writing down the balance 

equations.   

 

𝑁𝛼𝑑𝑆𝛽 = 𝑁𝛼𝑟𝑑𝛽 

(𝑁𝛼 + 𝑑𝑁𝛼)(𝑟 + 𝑑𝑟)𝑑𝛽 = 𝑁𝛼𝑟𝑑𝛽 + 𝑁𝛼𝑑𝑟𝑑𝛽 + 𝑑𝑁𝛼𝑟𝑑𝛽 + 𝑑𝑁𝛼𝑑𝑟𝑑𝛽 = 𝑁𝛼𝑟𝑑𝛽 

 

 
 

The resultant from the median line loads will equal: 
 

𝑁𝛼𝑟𝑑𝛽𝑠𝑖𝑛
𝑑𝛼

2
+ 𝑁𝛼𝑟𝑑𝛽𝑠𝑖𝑛

𝑑𝛼

2
= 2𝑁𝛼𝑟𝑑𝛽

𝑑𝛼

2
= 𝑁𝛼𝑟𝑑𝛽𝑑𝛼 

 

Now, we are defining the resultant force operated on a directed line dSα  from line loads. 

 



 

 
𝑁𝛽𝑑𝑆𝛼 = 𝑁𝛽𝑅1𝑑𝛼 

𝑁𝛽𝑅1𝑑𝛼𝑠𝑖𝑛
𝑑𝛽

2
= 𝑁𝛽𝑅1𝑑𝛼

𝑑𝛽

2
 

 

This resultant acts on both edges of infinitesimally small element, that’s why the sum of all 

circumferential forces will equal 𝑁𝛽𝑅1𝑑𝛼𝑑𝛽. 

This force is situated under the angle 𝛼 and called the projection, subsequently the resultant will 

equal 𝑁𝛽sinα𝑅1𝑑𝛼𝑑𝛽 . 

The resultant from external pressure to a normal line of median surface is equal: 

 

𝑅 = 𝑃𝑑𝑆𝛼𝑑𝑆𝛽 = 𝑃𝑅1𝑅2sinα 𝑑𝛼𝑑𝛽 

∑ 𝑛̅ : − 𝑁𝛼𝑟𝑑𝛼𝑑𝛽 − 𝑁𝛽sinα𝑅1𝑑𝛼𝑑𝛽 + 𝑃𝑅1𝑅2sinα 𝑑𝛼𝑑𝛽 = 0  

𝑁𝛼𝑅2sinα𝑑𝛼𝑑𝛽 + 𝑁𝛽𝑅1𝑑𝛼𝑑𝛽sinα = 𝑃𝑅1𝑅2sinα 𝑑𝛼𝑑𝛽  

 

Laplace’s equation:  
𝑁𝛼

𝑅1
+
𝑁𝛽

𝑅2
= 𝑃 

 

Static equations let us determine meridian and circular line loads for general shell. Line loads call 

the constant the constant about thickness stresses. The values of these stresses equal: 

 

𝜎𝛼 =
𝑁𝛼

𝛿
; 𝜎𝛽 =

𝑁𝛽

𝛿
 

The arising stresses conform to the arising deformations that are determined by Hooke law 

formula: 

 

𝜀𝛼 =
1

𝐸
(𝜎𝛼 − 𝜇𝜎𝛽) 

 

𝜀𝛽 =
1

𝐸
(𝜎𝛽 − 𝜇𝜎𝛼) 

 

It’s necessary to define the deformation during the stiffness task. Relative deformation value is 

evaluated through the interchange vector components in a case of axially symmetric loading in the 

following manner:  

 

𝜀𝛼 =
1

𝑅1
(
𝑑𝑢

𝑑𝛼
+
𝑤

𝑅
) 

𝜀𝛽 =
1

𝑟
(𝑢 cos 𝛼 + 𝑤 sin 𝛼) 

 

where u and w – circular and radial movement accordingly. 

 

Calculation algorithm of axially symmetric shells stressing is the following: 

 

1. Line loads Nα and Nβ are found through the static equations. 



 

2. Stresses are defined according to line loads. 

3. Failure zone is determined by analyzing the stress fields. Stresses in these zones are used 

for carrying out of checking calculation, design calculation, strength calculation and 

additional loads calculation. 

4. Relative deformations εα and εβ and also movement vector projection are defined according 

to stresses in the case if stiffness limitations for shell are assigned. 

The presented algorithm is used after the analyzing element decomposing as the aircraft 

construction has a difficult geometry. Algorithm will be the following (example: propellant tank): 

 

 

 
 

 

 

1. Now, you are accomplishing the simplifying or decomposition. 

2. Then, you are determining the loading simulation case. 

3. Then, you are caring out the strength analysis of every shell element for each simulation 

case. 

4. Then, you are determining the construction geometry and all elements total weight from 

the strength condition. 

5. Then, you are caring out the stress state alignment in the edge effects zone. In this case, 

you are solving the moment task for every shell and define the stress fields. After this, you 

are caring out the performance evaluation and geometry healing if it’s necessary in the 

construction concentrator area on the stress fields. 

6. Then, after the specified calculations the documentation for a tab or an element is being 

produced. The specimen is being manufactured and the tests are being performed according 

to this.   

 

Let’s consider the particular cases of shells loaded by internal pressing for problem solving: 

 

Object 1. 

 

Spherical shell calculation loaded with internal pressing. The shell has a constant thickness.  



 

 

 
𝑅𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑅1 = 𝑅2 

 

If we use the static equation for finding the internal line loads, we are getting: 

 

 

 
 

2𝜋𝑟 × 𝑁𝛼 sin 𝛼 = 𝜋𝑟
2𝜌 

𝑟 = 𝑅𝑠𝑝ℎ𝑒𝑟𝑒 × sin 𝛼 

𝑅𝑠𝑝ℎ𝑒𝑟𝑒 × 2𝜋 × 𝑁𝛼 sin
2 𝛼 = 𝑅𝑠𝑝ℎ𝑒𝑟𝑒

2 × sin2 𝛼 𝜌𝜋 

𝑁𝛼 =
𝑃𝑅𝑠𝑝ℎ𝑒𝑟𝑒

2
 

𝑁𝛽 =
𝑃𝑠𝑝ℎ𝑒𝑟𝑒

2
 

 

We are using the Laplace equation for defining of the second formula 

 
𝑁𝛼
𝑅1
+
𝑁𝛽

𝑅2
= 𝑃 

𝑁𝛼
𝑅𝑠𝑝ℎ𝑒𝑟𝑒

+
𝑁𝛽

𝑅𝑠𝑝ℎ𝑒𝑟𝑒
= 𝑃 

 

Efforts amount let us find the stresses: 

 

𝜎𝛼 =
𝑁𝛼
𝛿

 

𝜎𝛽 =
𝑁𝛽

𝛿
 

 

This formulation allows us to write down the strength conditions and on the ground of it we will 

be able to solve the check and design problems for spherical shells. 

 



 

𝜎𝛼 =
𝑃𝑅𝑠𝑝ℎ𝑒𝑟𝑒
2𝛿

 

𝜎𝛽 =
𝑃𝑅𝑠𝑝ℎ𝑒𝑟𝑒
2𝛿

 

𝜎экв𝐼 =
𝑃𝑅𝑠𝑝ℎ𝑒𝑟𝑒
2𝛿

≤ [𝜎] 

𝜎экв𝐼𝐼𝐼 = 𝜎1 − 𝜎3 =
𝑃𝑅𝑠𝑝ℎ𝑒𝑟𝑒
2𝛿

≤ [𝜎] 

 

Structural analysis is always performed according to design limit loads 𝑃𝑝 = 𝑃экспл × 𝑓 

Material factor for the tanks f=1.5 

For spherical tanks f=2.25 

These common factors allow us to solve: 

 

 Check task: 

 

𝜎экв𝐼𝐼𝐼 =
𝑃𝑝𝑅𝑠𝑝ℎ𝑒𝑟𝑒

2𝛿
≤ [𝜎] 

 

Design task presumes finding the shell thickness: 

 

𝛿 ≥
𝑃𝑝𝑅𝑠𝑝ℎ𝑒𝑟𝑒
2[𝜎]

 

 

Lifting power calculation is carried out in the following way: 

 

𝑃𝑃 ≤
2𝛿[𝜎]

𝑅𝑠𝑝ℎ𝑒𝑟𝑒
 

 

If there is a structural rigidity objective, so the length – diameter ratio εα and εβ are being 

defined. 

𝜀𝛼 =
1

𝐸
× (𝜎𝛼 − 𝜇𝜎𝛽) 

𝜀𝛽 =
1

𝐸
× (𝜎𝛽 − 𝜇𝜎𝛼) 

 

𝜀𝑟 =
𝑤

𝑅сф
     - radios direction, where 

𝑤 ≤ [𝑤] 
 

The characteristic property of the spherical shell is the fact that it is equi-loaded in all directions 

𝜎𝛼 = 𝜎𝛽. The sphere will always have lower weight and lateral area than any other shell with 

specified tank volume. 

Shell works on compression during this acceleration. Buckling phenomenon is possible. In this 

case, yield stress is the biggest loading that the shell can resist. Breaking point is the biggest stress 

during the behavior on tension.  

 

Object 2. 

 

Cylindrical shell calculation with the constant thickness loaded by internal pressure 

 



 

 
 

𝑅1 = ∞ 

                                                                          𝑅2 = 𝑅𝑐𝑦𝑙𝑒𝑖𝑛𝑑𝑒𝑟  

 

Now, let’s determine the internal line loads according to statistics formula: 

 

𝑁𝛼 =
𝑃𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

2
 

𝑁𝛽 = 𝑃𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 

 

These internal forces let us find the stresses: 

  

𝜎𝛼 =
𝑁𝛼
𝛿

 

𝜎𝛽 =
𝑁𝛽

𝛿
 

𝜎𝛼 =
𝑃𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

2𝛿
 

𝜎𝛽 =
𝑃𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝛿
 

 

We also take into account the fact that structure analysis is performed by ultimate loads         𝑃𝑝 =
𝑃экспл × 𝑓. 

Obviously, this stress allows us to define the equivalent loads and solve the following tasks 

according to them. 

 

Check task: 

 

𝜎экв𝐼 = 𝜎𝑚𝑎𝑥 = 𝜎𝛽 =
𝑃экс𝑓𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝛿
≤ [𝜎] 

 

Design task: 

 

𝛿 ≥
𝑃экс𝑓𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

[𝜎]
 

 

Lifting power calculation: 



 

 

𝑃экс =
𝛿[𝜎]

𝑓𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 

 

We are acting analogically during rigidity task solving like in spherical one. The characteristic 

property of this shell is that the construction is not a full-strength one. There is a stress appearing 

in circular direction that is twice as big as medial stresses. It follows that operative cylinder won’t 

have the minimum mass for pre-designed volume of cylindrical shell. Definitive cylindrical shells 

are received in the consequence of their waffle shell design. Composite materials also allow us to 

implement the full-strength cylindrical shell. 

 

 

Object 3. 

 

Cone shell calculation with the constant thickness loaded by its own pressing 

 

 
𝑅1 = ∞ 

𝑅2 =
𝑟

cos𝜑
 

 

Now, let’s determine the internal line loads: 

 

𝑁𝛼 =
𝑃𝑟

2 cos𝜑
 

𝑁𝛽 =
𝑃𝑟

cos𝜑
 

 

Then, find the stresses: 

 

𝜎𝛼 =
𝑁𝛼
𝛿

 

𝜎𝛽 =
𝑁𝛽

𝛿
 

𝜎𝛼 =
𝑃𝑟

2𝛿 cos𝜑
 

𝜎𝛽 =
𝑃𝑟

𝛿 cos𝜑
 

 



 

 
 

This approach lets us solve the check and design tasks and also to calculate the allowable loads. 

Now, let’s determine the operation loads by applying the safety factor for this. 

 

Check task: 

 

𝜎экв𝐼𝐼𝐼 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 = 𝜎𝛽 − 0 =
𝑃𝑅

2𝛿 cos𝜑
≤ [𝜎] 

 

Construction is operative in case of: 

 

𝑛 =
[𝜎]

𝜎экв𝐼𝐼𝐼
≥ 1 

 

Design task: 

 

𝛿 ≥
𝑃𝑅

2[𝜎] cos𝜑
 

Lifting power calculation: 

𝑃𝑚𝑎𝑥 =
2𝛿[𝜎] cos𝜑

𝑅
 

 

There is an inhomogeneous stress occurring in cone shell that is depend on cone half angle and 

reference radius. 

 

Critical section is defined in the cone with the biggest radius. The amount of circular and median 

values differs by two times. It’s recommended to use power stiffening in meridian and axis 

direction or to use the waffle shell for receiving of optimal structure.  

 

 

Object 4.  

 

Cylindrical tank calculation with bumped head 

 



 

 
 

𝑅сф = 1,2 ÷ 1,3𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 

𝑅сф = 1,3𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 

 

This structure calculation is stipulated by loading condition. The loading conditions are reverse 

that’s why the most important simulation cases are being separated. There are four loading 

simulation cases that are used for tank: 

 

1. Maximal inflation situation; 

2. Tank loading case by maximal bending moment and axial compressing force which is in 

evidence in max-q area. Altitudes from 8km to 12km conform to it. 

3. Operations of maximal axial compressing force. This loading case conforms to stage 

separation area. Load factor capability and axial compressing force exert at this moment.  

4. Temperature difference of structure heating from 250° in the area of high-temperature 

inflation and till 50°. 

 

 

 



 

 

It’s necessary to make a certain structural analysis for each simulation case. 

 

The decomposition is performed previously and then, we are getting structural members kit 

for which calculation for these simulation cases is carried out: 

 

1. Integral tank. It means the aft end takes up the operating of axial force and bending 

moments. Overpressure is included that is involved with security valve operation during 

internal pressure loading. 

 

 

 

Рн = Рном мах + ∆р 

where ∆р = 0,1МПа 

In spherical shell arises: 

 

𝜎𝛼 = 𝜎𝛽 =
𝑃𝑅𝑠𝑝ℎ𝑒𝑟𝑒
2𝛿

 

 

All imprecisions are considered during the calculations: 

 

𝑃𝑝 = 𝑃экспл × 𝑓р 

where 𝑓р = 1,5 

These conformities let us solve the design task: 

 

𝛿 ≥
(Рном мах + ∆р) × 𝑓р 𝑅𝑠𝑝ℎ𝑒𝑟𝑒

2[𝜎]
 

 

Stresses take the value: [𝜎] = 𝜎𝛽 

 

This operation is also repeated for the lower aft end: 

 

Рн = (Рном мах + ∆р) + 𝛾жН 

 

𝛿 ≥
((Рном мах + ∆р) + 𝛾ж𝑛𝑥Н) × 𝑓р 𝑅𝑠𝑝ℎ𝑒𝑟𝑒

2[𝜎]
 

 

where 𝑛𝑥 is a load factor. 

 



 

It is worth mentioning that mechanical-and-physical properties depend on temperature literally: 

 

𝛿 ≥
(Рном мах + ∆р) × 𝑓р 𝑅𝑠𝑝ℎ𝑒𝑟𝑒

2[𝜎]𝑡
 

 

Temperature effect is solved by breaking point calculation and elasticity modulus for 

temperature of structure operation in structure members. Variable of pressure height operates in 

cylinder. 

 

𝜎𝛼 =
(𝑃н + ∆р) 𝑓𝑅ц

2𝛿ц
= [𝜎]𝑡 

𝜎𝛽 =
(𝑃н + ∆р)𝑓𝑅ц

𝛿ц
= [𝜎]𝑡 

𝜎экв𝐼 = 𝜎𝑚𝑎𝑥 = 𝜎𝛽 =
(𝑃н + ∆р) 𝑓𝑅ц

2𝛿ц
≤ [𝜎]𝑡 

 

𝜎𝛼 =
(𝑃н + ∆р) 𝑓𝑅ц

2𝛿ц
≤ [𝜎]𝑡 

𝜎𝛽 =
(𝑃н + ∆р)𝑓𝑅ц

𝛿ц
≤ [𝜎]𝑡 

𝛿ц ≥
(𝑃н + ∆р)𝑓𝑅ц

[𝜎]𝑡
 

 

We are choosing the bigger thickness between two ones of the spherical shell, so this thickness is 

corresponding for the first simulation case. The second and the third calculation are performed in 

the following manner. 

 

2. Combined action of axial force and bending moment carry in the conception of equivalent 

force Tэкв. This is a force that creates the stress equal to sum from force and moment. 

 

𝑇экв = 𝑇 +
2𝑀

 𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 

𝜎сж =
𝑇

2𝜋 𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝛿𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 

 

We are able to define the cylinder thickness from this strength analysis. However, 

compression condition calls the primary loss of geometry. Buckling phenomenon is 

happening that’s why strength analysis is insufficient and it’s necessary to perform the 

buckling phenomenon.   

 

Object 5. 

 

Torus shell calculation loaded by its own pressure 

 



 

 
 

Torus shell is a shell defined by closed path rotation (sphere, ellipse etc.)  

 

𝑅1 = 𝑅 

𝑅2 =
𝑎

sin 𝛼
+ 𝑅 

 

Considering the torus shell, it should be used the method of sections for finding of the 

internal forces. 

 

 
Let’s use static equations for line loads finding. 

 

All forces sum to axial of symmetry is equal to zero: 

 

∑𝑥:−2𝜋(𝑎 + 𝑅 sin 𝛼)𝑁2 sin 𝛼 + 𝑄 = 0 

𝑄𝑝 = ∫ 2𝜋(𝑎 + 𝑅 sin 𝛼)𝑝 cos 𝛼 𝑅𝑑𝛼
𝛼

0

 

 

Having calculated the integral, we are getting: 

 

𝑄𝑝 = 𝜋𝑝𝑅 sin(2𝑎 + 𝑅 sin 𝛼) 

 

As a result, we are getting the following formula: 

 

𝑁𝛼 =
𝑃𝑅

2
(
2𝑎 + 𝑅 sin 𝛼

𝑎 + 𝑅 sin 𝑎
) 



 

 

Laplace’s equation: 

𝑁𝛼
𝑅1
+
𝑁𝛽

𝑅2
= 𝑃 

𝑁𝛽 = 𝑃𝑅2 =
𝑁𝛼𝑅2 

𝑅1
= 𝑃

𝑎

sin 𝛼
+ 𝑅 −

𝑃𝑅

2
(
𝑎 + 𝑅 sin 𝛼

sin 𝛼
)
1

𝑅 
(
2𝑎 + 𝑅 sin 𝛼

𝑎 + 𝑅 sin 𝛼
)

= 𝑃
1

sin 𝛼
(𝑎 + 𝑅 sin 𝛼 − 2𝑎

1

2
−
1

2
𝑅 sin 𝛼) =

𝑃𝑅

2
 

𝑁𝛽 =
𝑃𝑅

2
 

This result shows us that there is a non-homogeneous stress arising in the torus shell and 

there are also various meridian line loads arising in different points of torus. 

 

Let’s consider the example of distribution of internal line loads in torus  

 

 
 

 

𝑁𝛼=0 = 𝑃𝑅 

𝑁𝛼=90° =
𝑃𝑅

2
(
4𝑎 + 𝑅

2𝑎 + 𝑅
) =

5

6
𝑃𝑅 

𝑁𝛼=180° = 𝑃𝑅 

 

𝑁𝛼=−90° =
𝑃𝑅

2
(
4𝑎 − 𝑅

2𝑎 − 𝑅
) =

3

2
𝑃𝑅 

 

Then, we are finding the stresses: 

𝜎𝑚𝑎𝑥 =
𝑁𝑚𝑎𝑥
𝛿

 

𝜎𝛼 =
𝑃𝑅

2𝛿
(
2𝑎 + 𝑅 sin 𝛼

𝑎 + 𝑅 sin 𝑎
) 

𝜎𝛽 =
𝑃𝑅

𝛿
 

 

This characteristic property defines the manufacture singularity of torus tanks of two thicknesses.  

 

This decision let us solve the check and design tasks, and also make lifting power check. 



 

 

 

Check task: 

 

𝜎экв𝐼 = 𝜎экв𝐼𝐼𝐼 =
𝑃𝑅

2𝛿
(
2𝑎 − 𝑅

𝑎 − 𝑅
) ≤ [𝜎] 

 

It’s worth considering the safety factor impact fp that is equal to 1,5. 

 

𝜎экв𝐼𝐼𝐼 =
𝑃э𝑓𝑝𝑅

2𝛿
(
2𝑎 − 𝑅

𝑎 − 𝑅
) ≤ [𝜎] 

 

The structure is operative in case of: 

 

𝑛 =
[𝜎]

𝜎экв
≥ 1 

 

Design task: 

 

𝛿 ≥
𝑃э𝑓𝑝𝑅

2[𝜎]
(
2𝑎 − 𝑅

𝑎 − 𝑅
) 

 

 

During design calculations performing, there are always some technological limits, namely     𝛿 ≥
1𝑚𝑚. 

 

Lifting power calculation consists in defining the service pressure where the construction will 

be operative. We are getting the following formula from the strength condition.  

 

𝑃эксп =
2𝛿[𝜎]

𝑓𝑝𝑅
(
𝑎 − 𝑅

2𝑎 − 𝑅
) 

 

 

Spacer mating ring surface area definition 

 

Adjunctive thrust forces arise in the tanks constructions in geometry changing area acting 

on a shell in weld junction.    

 

 
 



 

𝑞𝑟 = 𝑁𝛼 × 𝐶𝑜𝑠𝛼 

 

Mating ring is fixed in thrust forces area that takes this thrust force. The choice of this 

mating ring has a set of features. Firstly, this ring has to possess such cross-section area so that the 

centroid of section will always be on a resultant of all operating forces of thrust forces area. 

 

 
Secondly, cross-section area has to possess dimensions and center of gravity position where 

operating forces will not have to create the rotational moment.  

 

𝑁𝛼
𝑦
× 𝑐1 + 𝑁𝛼

𝑐 × 𝑐2 = 0 

𝑁𝛼
𝑦
× 𝑐1 = 𝑁𝛼

𝑐 × 𝑐2 

 

These distinctive features let us make a choice of a spacer mating ring surface area from 

the mating ring operation condition with its cross-cut surface area.  

 

𝑞𝑟 = 𝑁𝛼
𝑐 × 𝐶𝑜𝑠𝛼 

𝑞𝑟 =
𝑃 × 𝑅сф

2
× 𝐶𝑜𝑠𝛼 

𝑅ц = 𝑅сф × 𝑆𝑖𝑛𝛼 

𝑅сф =
𝑅ц
𝑆𝑖𝑛𝛼

 

𝑞𝑟 =
𝑃 × 𝑅ц
2 × 𝑡𝑔𝛼

 

If the shell is in tension, so thrust forces 𝑞𝑟 are in compression. We will determine the 

surface area spacer mating ring magnitude from asymmetrical ring strength condition. Let’s 

consider the force magnitude from thrust forces arise constant stresses creating internal forces.  

Thrust forces magnitude in mating ring equal to stresses in mating ring multiplied by mating ring 

cross-cut surface area. 

Internal forces magnitude is defined by section method from balance condition. 

 

Resultant from thrust forces throughout the whole surface area equal to 2 × 𝑞𝑟 × 𝑅. 

 

∑𝑥: − 2 × 𝑞𝑟 × 𝑅 + 2𝜎шп × 𝐴шп 

𝜎шп =
𝑞𝑟 × 𝑅

𝐴шп
 

𝐴шп =
𝑞𝑟 × 𝑅

𝜎шп

=
𝑃 × 𝑅2

2 × 𝜎 × 𝑡𝑔𝛼
 

 

The biggest stress that will stand the mating ring during the compression is a yield point, 

then: 

 



 

𝐴шп =
𝑃 × 𝑅2

2 × 𝜎т × 𝑡𝑔𝛼
 

 

The mating ring surface area is found experimentally and has a view 

 

𝐴шп =
𝑃 × 𝑅2

2 × 𝜎т × 𝑡𝑔𝛼
− 0.788 × 𝛿ц√𝑅ц × 𝛿ц + 𝛿сф × √𝑅сф × 𝛿сф 

 

𝛿ц√𝑅ц × 𝛿ц + 𝛿сф × √𝑅сф × 𝛿сф    - mating ring reduction of area due to combined action 

of cylindrical shell and tank-doomed bulkhead. 

 

Stability checking of compressing ring is carried out as the mating ring works in 

compression. It is losing its stability with critical values of thrust forces.   

 

𝑞𝑟
крит

=
3 × 𝐸 × 𝐼шп

𝑅3
 

𝐼𝑚𝑖𝑛 ≥
𝑞𝑟
крит

× 𝑅3

3 × 𝐸
=

𝑃 × 𝑅4

2 × 𝑡𝑔𝛼 × 3 × 𝐸
 

 

These results define the mating ring design algorithm: 

  

1. Internal line forces are defined for predetermined constructions in shells jointing 

zone. Agreeably: these forces are set up pictorially in shells attachment point and 

find the equivalent force.  

2. Mating ring surface area is analyzed according to conformities. This 

mating ring surface area is set up in resultant direction, besides, gravity center is 

situated on equivalent force action line, at the distance, where active line forces 

wouldn’t create the moment.    

𝑁𝛼
𝑦
× 𝑐1 + 𝑁𝛼

𝑐ф
× 𝑐2 = 0 

 

Stability testing is performed for the formality of mating ring cross-sectional area. 

 

𝐼𝑚𝑖𝑛 ≥
𝑞𝑟
крит

× 𝑅3
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This algorithm allows us to implement the receiving of various forms of mating ring 

cross-section area. 

 The decision of aimed structure of mating ring cross-section area can be received only 

numerically.  

Mating ring is attached with shells due to help of welding. That’s why shell edge line is 

performed in the tabbing zone. 

 



 

 
𝛿з = 1.2 × 𝛿св 

𝑙з = (5 − 7) × 𝛿𝑠𝑝ℎ𝑒𝑟𝑒 

𝛿з = 1.2 × 𝛿𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 

𝑙з = (5 − 7) × 𝛿𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 

 

Aircraft structure elements buckling 
 

 

The loss of elastic shakedown primary form of structure elements is happening under the 

compression force operation. Booms and stiffeners are structure elements that are fashioned in a 

beam model.  

 

Let’s consider the bar buckling. Following buckling criterions are applied during the considering 

of load-bearing structure elements that are in compression. Buckling failure under the action of 

compression force arises in case when this force value exceeds critical forces. Critical force is 

some load that defines border between the stable and non-stable equilibrium state.  The second 

criterion is based on comparison of operational stresses with the critical one. If the first stress is 

bigger than the second one, then buckling failure is happening. 

 

Stress and critical force values determination 

Let’s take a look at hinged bar. Length l and geometrical characteristics like: surface area A, 

second moment of area I and radios of inertia i are all known.   



 

 
 

Let’s define the value Fкр and buckling failure for considering structure. 

 

𝑀𝑢 = (𝐸𝐼)𝑚𝑖𝑛
𝑑2𝑤

𝑑𝑥2
 

 

where EI – bending stiffness. 

 

Balanced condition of defected axis part is provided by balance equation. 

 

𝑀𝑢 − 𝑃𝑤(𝑥) = 0 

(𝐸𝐼)𝑚𝑖𝑛
𝑑2𝑤

𝑑𝑥2
+ 𝑃𝑤(𝑥) = 0 

𝑑2𝑤

𝑑𝑥2
+

𝑃

(𝐸𝐼)𝑚𝑖𝑛
𝑤(𝑥) =0    

k2 =
𝑃

(𝐸𝐼)𝑚𝑖𝑛
 

𝑑2𝑤

𝑑𝑥2
+ 𝑘2(𝑥) = 0 

 

This differential equation describes the defected axis of balanced condition.  

In this equation: 

𝑤(𝑥) = 𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥 

 

Now, we are using this formula for defining of the integration constant: 

 

𝑤(0) = 𝐴 + 0 = 0 

𝐴 = 0 

𝑤(𝑥) = 𝐵 sin 𝑘𝑥 

k2 =
𝑃

(𝐸𝐼)𝑚𝑖𝑛
 

k =
𝑛𝜋

𝑙
 

k2 =
𝑃

(𝐸𝐼)𝑚𝑖𝑛
=
𝑛2𝜋2

𝑙2
 

 



 

P =
𝑛2𝜋2(𝐸𝐼)𝑚𝑖𝑛

𝑙2
 

Px =
𝑛2(𝐸𝐼)𝑚𝑖𝑛

𝑙2
 

 

Thus, we are getting the Euler formula. 

 

 
 

Generally, the formula can be defined: 

 

Pкр =
𝑛2(𝐸𝐼)𝑚𝑖𝑛

𝜇𝑙
 

 

Pкр =
𝑛2𝐸

𝜆2
 

where λ – slenderness. 

 

 
Aluminum alloy is a main material in aircraft design practice. If there is a material 

diagram, so the value will be: 

 

σкр =
𝑛2𝐸

𝜆2
 



 

 

If there is no diagram, then the critical stresses are defined according to Tetmayer formula: 

 

𝜎кр = 𝜎т (1 − (1 −
𝜎п
𝜎т
)√

𝜎п
𝜎т
∗
) 

 

In case if 𝜎кр > 𝜎п, stress value is defined according to Tetmayer formula. 

In case if 𝜎кр < 𝜎п, Euler formula is applied. 

 

Plates buckling 
 

Structure load-bearing elements are applied during the aircraft dry compartments consideration 

which called booms and mating rings. They make the typical form. Then, we are getting plate 

loaded by compression forces. Compression forces operating on a compartment call compression 

and elements possible buckling failure. Now, we are getting the plate a×b compressed in both sides 

by compressing line force P. 

 

 
 

Primary form changing is happening under the operation of this load. Problem solving about plate 

buckling failure in a view of problem about the plate bending under some line load q action. Angles 

α1 and α2 are small. 



 

sin 𝛼1 ≅ tan𝛼1 =
𝑑𝑤

𝑑𝑥
 

𝛼2 = 𝛼1 +
𝑑𝛼1
𝑑𝑥

𝑑𝑥 

𝛼2 =
𝑑𝑤

𝑑𝑥
+
𝑑2𝑤

𝑑𝑥2
𝑑𝑥 

 

Now, we are defining the critical compression force value N for the plate, where plate buckling 

failure is happening. 

 

 
 

Compression line loads are equivalent to line force resultant q. 

 

 
 

𝑞𝑑𝑥𝑑𝑦 = (𝑁 sin 𝛼1 − 𝑁 sin𝛼2)𝑑𝑦 

 

We are making the following from this formula: 

 

𝑞 = 𝑁
𝑑2𝑤

𝑑𝑥2
 

 

This problem solving is leading to problem solving about rectangular plate bending under the 

action of pressure P. For that matter, we are treating to the known Sophie – Germain – 

Lagrangian formula. 

 

𝑑4𝑤

𝑑𝑥4
+

2𝑑4𝑤

𝑑𝑥2𝑑у2
+
𝑑4𝑤

𝑑𝑦4
=
𝑞

𝐷
 

where 𝐷 =
𝐸𝛿3

12(1−𝜇2)
 

 

𝐷 (
𝑑4𝑤

𝑑𝑥4
+

2𝑑4𝑤

𝑑𝑥2𝑑у2
+
𝑑4𝑤

𝑑𝑦4
) + 𝑁

𝑑2𝑤

𝑑𝑥2
= 0 

 

𝑞 = −𝑁
𝑑2𝑤

𝑑𝑥3
 



 

 

Differential equation solving can be made with force of trigonometric sequences expanding: 

 

𝑤(𝑥, 𝑦) = −∑∑ 𝐴𝑚𝑛

∞

𝑚=1

∞

𝑛=1

sin
𝑛𝜋

𝑎
𝑥 sin

𝑛𝜋

𝑏
𝑦 

 

This solving has the particular meaning for specified boundary conditions. If we insert this 

trigonometric solution into the changed Sophie – Germain – Lagrangian formula, we will get: 

 

𝑑2𝑤

𝑑𝑥2
= −∑∑ 𝐴𝑚𝑛

𝑛2𝜋2

𝑎4

∞

𝑚=1

∞

𝑛=1

sin
𝑛𝜋

𝑎
𝑥 sin

𝑛𝜋

𝑏
𝑦 

𝑑4𝑤

𝑑𝑥4
= ∑∑ 𝐴𝑚𝑛

𝑛4𝜋4

𝑎4

∞

𝑚=1

∞

𝑛=1

sin
𝑛𝜋

𝑎
𝑥 sin

𝑛𝜋

𝑏
𝑦 

𝑑4𝑤

𝑑𝑦4
= ∑∑ 𝐴𝑚𝑛

𝑚4𝜋4

𝑎4

∞

𝑚=1

∞

𝑛=1

sin
𝑛𝜋

𝑎
𝑥 sin

𝑛𝜋

𝑏
𝑦 

𝑑4𝑤

𝑑𝑥2𝑑𝑦2
= ∑∑ 𝐴𝑚𝑛

𝑛2𝜋2

𝑎2
𝑚2𝜋2

𝑎2

∞

𝑚=1

∞

𝑛=1

sin
𝑛𝜋

𝑎
𝑥 sin

𝑛𝜋

𝑏
𝑦 

∑∑ 𝐴𝑚𝑛
𝑛2𝜋2

𝑎2
𝑚2𝜋2

𝑎2

∞

𝑚=1

∞

𝑛=1

sin
𝑛𝜋

𝑎
𝑥 sin

𝑛𝜋

𝑏
𝑦 

∑∑ 𝐴𝑚𝑛 (𝐷 (
𝑛4𝜋4

𝑎4
+ 2

𝑛2𝜋2

𝑎2
𝑚2𝜋2

𝑏2
+
𝑚4𝜋4

𝑏4
) − 𝑁

𝑛2𝜋2

𝑎2
)

∞

𝑚=1

∞

𝑛=1

sin
𝑛𝜋

𝑎
𝑥 sin

𝑛𝜋

𝑏
𝑦 = 0 

 

Using the orthogonality property, we will modify trigonometric functions of this equation  

 

𝐷𝜋4 (
𝑛2

𝑎2
+
𝑚2

𝑏2
)

2

− 𝑁
𝑛2𝜋2

𝑎2
= 0 

 

 

We can define the force from this equation that implements the plate bend and buckling failure: 

 

𝑁 =  𝐷
𝑛2𝜋2

𝑎2
(
𝑛2

𝑎2
+
𝑚2

𝑏2
)

2

 

 

This force is a critical one where buckling failure is happening. 

 

𝑁 = 𝐾𝜎
𝐷𝜋2

𝑏2
 

 

 

Where Kσ – is a plate fix condition coefficient. 

 

Fix conditions define Kσ: 

 

 

 



 

- It is equal to 4 for hinge bearing; 

 

 
- It is equal to 7 during cantilever restraint; 

 

 
- It is equal to 0,425 for free flap hinge; 

 

 
- It is equal to 1,25 for free cantilever restraint. 

 

 
The received formula is used for critical stress definition: 

 

𝜎кр =
𝑁кр

𝛿
 

𝜎кр = 0,9𝐾𝜎 (
𝛿

𝑏
)
2

 

For pin-edge ones: 

 

𝜎кр = 3,6𝐾𝜎𝐸 (
𝛿

𝑏
)
2

 

 

The received critical stress defines the buckling failure that arises in plate. This formula let us 

determine the applying zones of this formula or rather in elastic limit. 

It means that every structure can possess such split 
𝛿

𝑏
 that leads to structure operation outside the 

elastic rigidity: 

 

𝜒 =
𝛿

𝑏
 

𝜎кр = 𝜎пу = 3,6𝐾𝜎𝐸𝜒
2 

 

If there is no deformation diagram, then it is used: 

 

𝐴 = 1 +
1

2

𝜎п𝜎т
𝜎п

(1 −
𝜎п
𝜎т
)
2

 

 

So, it’s necessary: 

 

1. Check the critical stress value: 



 

 

- if it is smaller than elastic limit: 

𝜎кр = 0,9𝐾𝜎 (
𝛿

𝑏
)
2

 

 

- if the stress is higher: 

𝜎кр =
𝜎т

𝐴 + √𝐴2
 

 

2. The conformities receiving allow us to define the secondary buckling of aircraft buildup 

load-bearing elements. In this case 𝐾𝜎 is taken equal to 0,425 since it is always the free 

pin-edge fixing with force of splined fixing. 

 

Aircraft booms and longerons check and design tasks 
 

They are being solved based on two criterions:  

 

1. According to acting compressing force and loading. 

2. According to stresses. 

 

Booms, longerons are fashioned due to trussed system that is why formulas for defining bar 

buckling failure are used for problems solving: 

 

1. P𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 =
𝜋2(𝐸𝐼)𝑚𝑖𝑛

(𝜇𝑙)2
 

2. σ𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 =
𝜋2𝐸

𝜆2
 

These formulas operate till elastic limit. Critical stresses are determined according to Tetmayer 

formula or to approximation method in case if they are situated from yield stress till elastic 

limit.  
 

     The following coefficient is put in for this: 

 

𝜑 =
[𝜎у]

[𝜎]
=

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙
𝑛у
𝜎т
𝑛

=
𝜎кр𝑛

𝜎т𝑛у
=
𝜋2𝐸𝑛

𝜎т𝑛у𝜆
2
 

[𝜎у] = 𝜑[𝜎] 

 

There is a slenderness dependency table from this coefficient for various materials. 

 

Check task solution algorithm: 

 

1. We are defining the surface area A, minimum inertial moment Imin , inertia radius i 

according to compression bar known geometry. 

2. We are defining the effective length lпр and slenderness ration λ. 



 

3. We are carrying out he critical force calculation Pкр. 

4. Then, we are defining φ according to the table. 

 

Design task algorithm: 

 

1. Let’s be designated by a coefficient φ, which is situated within limits of 0 ≤ 𝜑 ≤ 10. 

2. Now, we are defining the surface area from stability condition 

 

𝐴 ≥
𝑃

𝜑[𝜎]
 

 

3. According to А, we are determining the diameter d and find imin: 

4.  

𝐴 =
𝜋𝑑2

4
 

𝑑 = √
4𝐴

𝜋
 

𝑖𝑚𝑖𝑛 =
𝑑

4
 

 

5. Then, we defining the slenderness ratio λ according to known bar grip condition and 

inertia radius: 

 

𝜆 =
𝜇𝑙

𝑖𝑚𝑖𝑛
 

 

6. Now, let’s use the linear interpolation according to the table. 

7. Then, we are finding the thickness δ: 

 

𝛿 =
𝜑𝑖−1 − 𝜑1

𝜑1
× 100% 

 

8. The actions are carried out iterative till the receiving of satisfactory performance 𝛿 ≥

1%. In case if the condition is not performed, we are getting back to section 2. The 

necessary result is usually made from 3-4 iterations.  

 

Shells stability 

 

The loss of elastic equilibrium primary form compressing loads conditions is happened 

also in shells. In most times, such loads are compressive ones and external divided pressure.  

From experiment, shells buckling failure are happening according to another conformities 

than in plates and bars. It appears by the fact that the dependence between loading called the 

buckling failure is the following: deformation dependence from loading during the loading till 

critical loads is linear; the deformation is increasing and the loading is decreasing during the 

buckling failure. The deformation is increasing it the plates and bars during the load increment. 



 

 
 

Let’s consider the operation of hinged-supported cylinder for critical force finding where 

the buckling failure is happening.  

 

 
 

Let’s consider that the symmetric buckling failure is happening. 

Line inter radial forces are arises in these loading conditions 𝑁𝛼 = 𝑞. 

 

Ring strength: 𝑁𝛽 = 0 

 

𝜎𝛼 =
𝑁𝛼
𝛿
=
𝑞

𝛿
 

 

Compressional cylinder strain stress state definition is carried out as a result of solidary 

consideration of static equations, geometric formulas of strain compatibility and physical formulas 

(elastic material correlation according to the Hook’s Law). 

These equations blended decision let us make the problem to a single formula towards 

middle surface of a shell deflection: 

 

𝐷
𝑑4𝑤

𝑑𝑥4
+ 𝐸

𝛿

𝑅2
× 𝑤 + 𝑞

𝑑2𝑤

𝑑𝑥2
= 0 

𝐷 =
𝐸𝛿3

12 × (1 − 𝜇2)
 

 

In case of hinged edge, fixing boundary conditions will be: 

 

𝑥 = 0 → 𝑤 = 0 

 

𝑀 = 𝐷 ×
𝑑2𝑤

𝑑𝑥2
= 0 



 

𝑥 = 𝑙 → 𝑤|𝑥=𝑙 =
𝑑2𝑤

𝑑𝑥2
|𝑥=𝑙 = 0 

 

It is comfortable to seek the problem solving for these grip conditions in a view of 

trigonometric sequence: 

𝑤(𝑥) = ∑ 𝐴𝑚 sin
𝑚 × 𝜋

𝑙
× 𝑥

∞

𝑚=1

 

 

Substitute in   𝐷
𝑑4𝑤

𝑑𝑥4
+ 𝐸

𝛿

𝑅2
× 𝑤 + 𝑞

𝑑2𝑤

𝑑𝑥2
= 0  and get: 

 

𝑑2𝑤

𝑑𝑥2
= −∑ 𝐴𝑚 sin

𝑚 × 𝜋

𝑙
× 𝑥

∞

𝑚=1

 

𝑑4𝑤

𝑑𝑥4
= ∑ 𝐴𝑛 𝑠𝑖𝑛 (

𝑚 × 𝜋

𝑙
) × 𝐴𝑚 𝑠𝑖𝑛

𝑚 × 𝜋

𝑙
× 𝑥

∞

𝑚=1

 

∑ 𝐴𝑛 × 𝐷 × (
𝑚 × 𝜋

𝑙
)
4

× 𝑠𝑖𝑛 (
𝑚 × 𝜋

𝑙
) × 𝑥

∞

𝑚=1

+ ∑ 𝐴𝑚 × 𝐸 ×
𝛿

𝑅2

∞

𝑚=1

× 𝑠𝑖𝑛 (
𝑚 × 𝜋

𝑙
) −

− ∑ 𝐴𝑚 × (
𝑚 × 𝜋

𝑙
)
2

× 𝑞𝑚 × 𝑠𝑖𝑛
𝑚 × 𝜋

𝑙
× 𝑥 = 0

∞

𝑚=1

 

∑ 𝐴𝑚 × [𝐷 × (
𝑚 × 𝜋

𝑙
)
4

+ 𝐸 ×
𝛿

𝑅2
− (

𝑚 × 𝜋

𝑙
)
2

× 𝑞𝑚] × 𝑠𝑖𝑛
𝑚 × 𝜋

𝑙
× 𝑥 = 0

∞

𝑚=1

 

 

𝐴𝑚 ≠ 0; 𝑠𝑖𝑛
𝑚 × 𝜋

𝑙
× 𝑥 ≠ 0 

𝐷 × (
𝑚 × 𝜋

𝑙
)
4

+ 𝐸 ×
𝛿

𝑅2
− (

𝑚 × 𝜋

𝑙
)
2

× 𝑞𝑚 = 0 

𝑞𝑚 = 𝐷 × (
𝑚 × 𝜋

𝑙
)
4

+ 𝐸 ×
𝛿

𝑅2
×

1

(
𝑚 × 𝜋
𝑙

)
2 

 

Buckling failure is happening under the operation of line load 𝑞𝑚. It depends on parametric 

variable 
𝑚×𝜋

𝑙
.  Let’s determine the smallest value: 

 

Пусть (
𝑚×𝜋

𝑙
)
2
= λ →  𝑞𝑚 = 𝐷 × 𝜆 +

𝐸×𝛿

𝑅2×𝜆
 

 
𝑑𝑞𝑚
𝑑𝜆

= 0 → 𝑞𝑚 = 𝑚𝑖𝑛 →
𝑑𝑞𝑚
𝑑𝜆

= 𝐷 −
𝐸 × 𝛿

𝑅2 × 𝜆
 

 

𝜆2 = (
𝑚 × 𝜋

𝑙
)
4

=
𝐸 × 𝛿

𝑅2 × 𝐷
 

 

𝜆 = (
𝑚 × 𝜋

𝑙
)
2

= √
𝐸 × 𝛿

𝐷
×
1

𝑅
→ 𝑞𝑚 = 𝑚𝑖𝑛 

 

Now, let’s substitute the found value (
𝑚×𝜋

𝑙
)
2
 into the formula: 



 

𝑞𝑚 = √
𝐸 × 𝛿

𝐷
×
1

𝑅
+ 𝐸 ×

𝛿

𝑅2
×
𝑅 × √𝐷

√𝐸 × 𝛿
 

𝑞𝑚 = √
𝐸 × 𝛿 × 𝐷

𝑅2
+√

𝐸 × 𝛿 × 𝐷

𝑅2
= √

4 × 𝐸 × 𝛿 × 𝐷

𝑅2
 

𝑞𝑚 =
2

𝑅
× √𝐸 × 𝛿 × 𝐷 

 

Stress, where the buckling failure will be presented: 

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 =
𝑞𝑚
𝛿
=

2

𝑅 × 𝛿
× √𝐸 × 𝛿 × 𝐷 = √

4 × 𝐸 × 𝛿 × 𝐷

𝑅2
= √

4 × 𝐸 × 𝐸 × 𝛿3

𝑅2 × 𝛿 × 12 × (1 − 𝜇2)
 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 =
𝐸 × 𝛿

𝑅
× √

1

3 × (1 − 𝜇2)
= {𝜇 = 0.3} = 0.605 × 𝐸 ×

𝛿

𝑅
 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 0.605 × 𝐸 ×
𝛿

𝑅
 

 

This formula was received by S.P. Tymoshenko, it can’t be confirmed 

experimentally. This thing is connected with the shell geometry idealization. 

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑅 × 𝐸 ×
𝛿

𝑅
 

𝐾𝑅 = 0.1 − 0.2 

 

This result was used for compressing cylinder critical stresses analysis under the 

act of axial force. Imperfection value 𝐾𝑅 is defined on the basis of experiments in 

engineering calculations.   

It’s used in different sources: 

 

𝐾𝑅 =
1

𝜋
× √(

100×𝛿

𝑅
)
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- Lizin-Pyatkin 

𝐾𝑅 = 0.605 × 𝐾с – Mosakovsky  

 

Unstiffened shells imperfection value (0.1 − 0.2)𝐾𝑅, for stiffened shells (booms) 

(0.4 − 0.5)𝐾𝑅, for honeycombs (0.7 − 0.8)𝐾𝑅. 

This conformity let us perform the check and design ones and define the lifting 

power.  

 

          Check calculation: 

 

The calculation determines 𝐾𝑅 and 𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑅 × 𝐸 ×
𝛿

𝑅
 according to it for given 

geometry,  

𝑇 = 2 × 𝜋 × 𝑅 × 𝛿 × 𝜎кр = 2 × 𝜋 × 𝑅 × 𝛿 × 𝐾𝑅 × 𝐸 ×
𝛿

𝑅
 

𝑇 = 2 × 𝜋 × 𝐾𝑅 × 𝐸 × 𝛿
2 

𝑇𝑃 ≤ 𝑇𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 

 

                               𝜂 =
𝑇кр

𝑇𝑃
≥ 1 – the structure is resistant.  



 

 

Design calculation: 

 

Start value 𝐾𝑅0 = 0.18 is designated during its performing. Then, we are determining 𝛿  

from stability condition in handbook calculation: 

 

𝛿(1) = √
𝑇𝑃

2 × 𝜋 × 𝐾𝑅 × 𝐸
 

𝐾𝑅
(1) =

1

𝜋
× √(

100 × 𝛿

𝑅
)
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𝐾𝑅
𝑖 − 𝐾𝑅

𝑖−1

𝐾𝑅
𝑖−1

× 100% < 1% 

 

If the condition is not carried out, so the iterations are being performed until the 

condition is made.  

 

This iteration procedure converges through 5-6 iterations. 

 

  Lifting power determining: 

 

Compressing cylinder lifting power value defines the buckling failure critical load: 

 

𝑇𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 2 × 𝜋 × 𝐾𝑅 × 𝐸 × 𝛿
2 

 

The received solving allows us to give some recommendations at the material 

choice and structure geometry from the stability condition.   

General and local buckling. Cylindrical shell buckling analysis. 
 

General buckling is elastic element all form loss (compression bar). 

 

Local buckling is a changing local form with form loss in compressing structure 

conditions.   

 

 
 



 

𝑃𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 =
𝜋2 × 𝐸 × 𝐼𝑚𝑖𝑛
(𝜇 × 𝑙)2

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙
𝑜 =

𝜋2 × 𝐸

𝜆
=
𝜋2 × 𝐸

(
𝜇 × 𝑙
𝑖𝑚𝑖𝑛

)
2 

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙
м = 𝐾𝜎 × 𝐸 × (

𝛿

𝑏
)
2

 

 

𝐾𝜎 = 0.425 - anchorage coefficient. 

 

Profiles standard set used in rocket engineering provides about 15 per cent excess 

of local buckling under the stresses of general buckling, but we should always perform the 

local and general buckling calculation. 

 

𝜂у
о =

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙
𝜎р

≥ 1 

𝜂р
м =

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙
м

𝜎р
≥ 1 

 

Cylindrical shell stability in bending moment and axial force 

combined action conditions 
 

 

Cylindrical shell as a tank element is situated in loads combined action conditions 

in peak dynamic pressing zone during the aircraft flight. 

 Cylindrical shell stability analysis is performed according to equivalent load value 

in this simulation case. 

Equivalent load (force) is a compressing force that calls such stresses which equal 

to stresses sum force from axial force and bending moment in rocket airframe slicing. 

 



 

 
 

                                𝜎′ =
𝑇

2×𝜋×𝑅×𝛿
                   𝜎′′ =

𝑀

𝑤
 

𝜎𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 =
𝑇экв

2 × 𝜋 × 𝑅 × 𝛿
= 𝜎′ + 𝜎′′ =

𝑇

2 × 𝜋 × 𝑅 × 𝛿
±

𝑀

𝜋 × 𝑅2 × 𝛿
 

 

𝑇𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 𝑇 +
2 ×𝑀

𝑅
 

Aircraft airframe or cylindrical propellant tank buckling analysis in force and 

moment combined action conditions are carried out after the equivalent force.   

Checking calculation, design calculation and lifting power calculation are 

performed analogically after equivalent load in this case.    

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑅 × 𝐸 ×
𝛿

𝑅
 

𝑇𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 2 × 𝜋 × 𝐾𝑅 × 𝛿
2 × 𝐸 

𝛿 = √
𝑇экв

2 × 𝜋 × 𝐾𝑅 × 𝐸
= √

𝑇 +
2 ×𝑀
𝑅

2 × 𝜋 × 𝐾𝑅 × 𝐸
 

𝛿 = √
𝑇э × 𝑓𝑇 +

2 ×𝑀э × 𝑓𝑀
𝑅

2 × 𝜋 × 𝐾𝑅 × 𝐸
 

𝑓𝑇 = 𝑓𝑀 = 1.3 

 

Buckling analysis is carried out after the highest equivalent loads during the tank 

design for the second and the third simulation cases. 

 

Cylindrical shell axial compression considering the manifold 

pressure 

 



 

 

   Integral tanks can be located simultaneously under the pressure of axial 

compression force, bending moments and internal pressing.  

Operational internal pressuring makes the structure load alleviation. 

 

𝐹разгр = 𝑃𝑚𝑖𝑛 × 𝜋 × 𝑅
2 

𝑃𝑚𝑖𝑛 = 𝑃н − ∆𝑃 

∆𝑃 = 0.1Мпа 

 

This of-loading force leads to compression load decreasing that acts on a tank and, 

also fluff the shell making it the dome-shaped oneб thereby decreasing the flaws and 

discrepancies of cylinder shell.  

This scene is confirmed experimentally. 

Cylindrical shell calculation is performed after the same formulas as the cylinder.  

 

𝛿 = √
𝑇э × 𝑓𝑇 +

2 ×𝑀э × 𝑓𝑀
𝑅

− 𝜋 × 𝑅2 × 𝑃𝑚𝑖𝑛

2 × 𝜋 × 𝐾𝑅 × 𝐸
 

𝜎кр = 𝐾𝑅 × 𝐸 ×
𝛿

𝑅
 

𝑇𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 2 × 𝜋 × 𝐾𝑅 × 𝛿
2 × 𝐸 

 

In these formulas 𝐾𝑅 – imperfection value is defined based on analysis experiments 

pictorially or analytically according to the following formulas: 

 

𝑃̅ < 0.8 → 𝐾𝑅 = 𝐾0 + 0.265 × √𝑃̅ 

𝑃̅ > 0.8 → 𝐾𝑅 = 0.42 

 
 

These formulas are used for checking and design calculations performing.  Stability 

coefficient is a performance criterion during checking calculations performing: 

 

𝜂у =
𝑇кр

𝑇р
≥ 1 

 

𝑇Р = 𝑇экр
Р = 𝑇э × 𝑓𝑇 +

2 ×𝑀э × 𝑓𝑀
𝑅

− 𝜋 × 𝑅2 × 𝑃𝑚𝑖𝑛 



 

𝜂у =
𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙
𝜎р

≥ 1 

 

Operative structure geometric parameters are defined by iteration method during 

design tasks performing after the scheme: 

 

𝐾𝑅
0 = 0.18 

𝛿0 = √
𝑇экв

2 × 𝜋 × 𝐾𝑅 × 𝐸𝑡
 

𝐾𝑅
(𝑖) =

1

𝜋
× √(

100 × 𝛿

𝑅
)
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                    if     
𝐾𝑅
𝑖 −𝐾𝑅

𝑖−1

𝐾𝑅
𝑖−1 × 100% < 1%- the calculation is finished 

if  
𝐾𝑅
𝑖 −𝐾𝑅

𝑖−1

𝐾𝑅
𝑖−1 × 100% > 1% - so, the pressure is re-counted 

𝑃 =
𝑃н

𝐸
× (

𝑅

𝛿
)
2
, and then we are making the whole iteration re-counting until the 

condition 
𝐾𝑅
𝑖 −𝐾𝑅

𝑖−1

𝐾𝑅
𝑖−1 × 100% < 1% is performed.  

 

Conical shell buckling analysis affected by compressing 

 

 
 

As the experiment shows, buckling failure in conical shell is happening as a result 

of shell cotton-shaped crippling in the maximum radius zone. 

 Buckling failure from compression force can be determined according to 

experiment. Out from the experiment, conical shells buckling failure beginning with cone 

half angle 10˚-60˚can be described well by formulas for cylindrical shells with 𝑅ц = 𝑅2. 

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑅 × 𝐸 ×
𝛿

𝑅2
= 𝐾𝑅 × 𝐸 ×

𝛿

𝑅
cos𝜑 

𝐾𝑅 =
1

𝜋
× √(

100 × 𝛿

𝑅
)
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𝐾𝑅 = 0.605 × 𝐾с 

𝐾с = 1 − 0.9 × (1 − 𝑒𝑥𝑝 (−
1

16
√
𝑅

𝛿
)) 



 

𝑇 = 𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 × 𝑐𝑜𝑠 𝜑 × 2 × 𝜋 × 𝐾𝑅 × 𝛿 = 2 × 𝜋 × 𝐾𝑅 × 𝛿
2 × (𝑐𝑜𝑠 𝜑)2 

𝑇кр = 2 × 𝜋 × 𝐾𝑅 × 𝛿
2 × (𝑐𝑜𝑠 𝜑)2 

𝜂у =
𝑇кр

𝑇р
≥ 1 

𝛿 = √
𝑇кр

2 × 𝜋 × 𝐾𝑅 × (𝑐𝑜𝑠 𝜑)
2
 

If the cone half angle is 0˚-10˚, then 

 

𝑅𝑅 =
𝑅 + 𝑅0
2

×
1

𝑐𝑜𝑠 𝜑
 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑅 × 𝐸 ×
𝛿

𝑅𝑅
 

 

Cylindrical shell buckling affected by external differential pressure 

 

 
 

Aircraft structure members can lose its stability under the influence of external 

differential pressure (fairing, cylinder). 

Each structure member buckling failure is defined by geometrical parameters and 

material mechanical characteristics.  

Let’s consider the cylinder buckling failure with radius R, length l, and thickness 

δ. Critical pressing value where the buckling failure for cylinder is happening is 

determined according to Popkovich formula: 

 

𝑃𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑐 ×
𝜋 × √6

9 × (1 − 𝜇2)
× 𝐸 × (

𝑅

𝑙
) × (

𝛿

𝑅
)

5
2
 

𝑃𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑐 × 𝐸 × 0.92 × (
𝑅

𝑙
) × (

𝛿

𝑅
)

5
2
 

 

𝐾𝑐 = 0.7 − 0.8 - cylindrical shell figure of merit. It was received based on 

experiments and it specifies the critical pressing value according to Popkovich formula. 



 

 

𝜎кр =
𝑃кр × 𝑅

𝛿
 

 

The critical stress corresponds to buckling failure critical pressing: 

 

𝜎кр =
𝑃кр × 𝑅

𝛿
× 𝐾𝑐 × 𝐸 × 0.92 × (

𝛿

𝑙
) × √

𝛿

𝑙
 

This formula is used for checking, design and lifting power calculations. 

 

Stability criterions are condition: 

 

𝜂у =
𝑃кр

𝑃р
≥ 1 

 

Conical shell buckling analysis loaded by external differential 

pressure 

 
Buckling failure critical pressure value is defined by Popkovich model and is 

specified based on experiment, cone half angle influence coefficient.  

 

If the cone half angle is 10˚-25˚, then 

 

𝑃𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑐 × 𝐸 × 0.92 × (
𝑅

𝑙
) × (

𝛿

𝑅
)

5
2
× (cos𝜑)

3
2 

If the cone half angle is 25˚-70˚, then 

 

𝑃𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑐 × 𝜌 × 𝐸 × 0.92 × (
𝑅

𝑙
) × (

𝛿

𝑅
)

5
2
× (cos𝜑)

3
2 

𝜌 = 3.1 − 2.47 ×
𝑅0
𝑅
→ 0 ≤

𝑅0
𝑅
≤ 0.6 

𝜌 = 2.66 − 1.74 ×
𝑅0
𝑅
→ 0.65 ≤

𝑅0
𝑅
≤ 1 

 

If the cone half angle is 0˚-10˚, then 

𝑃𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑐 × 𝐸 × 0.92 × (
𝑅∗

𝑅
) × (

𝛿

𝑅∗
)

5
2
 

𝑅∗ =
𝑅0 + 𝑅

2
 

 



 

Spherical shell buckling failure under the action of external 

differential pressure 

 

 
 

As the experiment shows, spherical shell buckling failure under the action of 

external differential pressure is happening during the stresses when their value coincides 

with cylindrical shell critical stresses under the action of compression force. 

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾𝑅 × 𝐸 ×
𝛿

𝑅
 

𝐾𝑅 = 0.605 × 𝐾с 
 

𝐾с = 1 − 0.9 × (1 − 𝑒𝑥𝑝 (−
1

16
√
𝑅

𝛿
)) 

 

𝑃𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 =
2 × 𝜎кр × 𝛿

𝑅
= 2 × 𝐾𝑅 × 𝐸 × 𝛿

2 

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 =
𝑃 × 𝑅

2 × 𝛿
 

 

Buckling failure is determined: 

 

𝜂у =
𝑃кр

𝑃р
≥ 1 

 

These formulas are used for spherical segments buckling failure determining 

(provisional aft ends) under the action of external pressing. 

 As the experiment shows, spherical segment buckling failure is 30% smaller than 

sphere one, that’s why: 

 

𝜎𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 𝐾З × 𝐾𝑅 × 𝐸 ×
𝛿

𝑅
 

𝐾З = 0.7 

𝐾𝑅 = 0.605 × 𝐾с 
𝑃𝑐𝑟𝑦𝑡𝑖𝑐𝑎𝑙 = 2 × 𝐾З × 𝐾𝑅 × 𝐸 × 𝛿

2 

 

 



 

Waffle – grid structure tank wall calculation 

 

Analytical model 

 

 Let’s consider the waffle – grid structure.  

Analytical model: cylindrical shell is loaded by: Т, М, Рн, Рг, tº. 

 

 

Unstiffened shells operate too 

ineffectively during the action 

of axial compression.. 

 σкр/σт = 0.1-0.2 

Longitudinal stringers 

enforcement increases the 

lifting power (збільшується 

shell cylindrical stiffness is 

increasing and the mass is 

distributed more rationally). 

Transversal ribs (mating rings) 

increases the stringer lifting 

power, in which case it 

increases the extensional 

crossing effective thickness that 

operates on integrity in cross 

direction. Besides, Waffle shells are less quick-response to initial imperfections. 

 

 
 

 Waffle shell lets decrease the compartment mass by two or three times. Square 

case is used the most often that is featured by four characteristics:  

 

 δ – fabric thickness; 

 h – fin length (or primary thickness); 

 S=C – fin width; 

 a=b – cage dimensions, fins distance. 



 

 

 
 

 Such shell can be considered as a structurally orthotropic one in the handbook 

calculation during strength analysis and general storage qualities (ribs conditional 

distribution).  

 This is a more exact approach of computational methods application, as an 

example – finite – element method that is in need of materials application and they 

are not very comfortable for design analysis.  

  

Structurally – orthotropic shell is featured by characteristics: 

 
a

Fc
c  - inverse intersection effective thickness that is taking up axial 

stresses; 

 
b

Fш
ш  - axial intersection effective thickness that is taking up hoop 

stresses; 

 cF  and шF - booms and mating rings surface area accordingly; 

 cD and шD  - elements cylindrical stiffness of inverse and axial intersection 

accordingly. 

 

Operational compression stresses: 

 

Axial compressional stresses:     
c

2

min

р

екв
1

R2

RРТ




  

 

Hoop stresses:          
ш

p

2

RP


  

 

 

 

 

 



 

Operational stresses and possible shell fracture modes  

 

Buckling failure 

 

General buckling is happening by handling marks creation in circular direction with 

some pallets catching along with stiffening ribs. 

Axisymmetric and symmetric forms of failure storage qualities are possible. General 

storage qualities critical stresses can be determined in accordance with structurally 

orthotropic shell scheme: 

 

c

2

шt
c

з

кр
R

DE4
k


  , cшt

з

крcкр hDEk4R2T   

 

kс – durability coefficient. It’s recommended to take kс = 0,27 - 0,3 for waffle shells. 

 

Critical stresses of durability failure axisymmetric and symmetric forms are equal 

for square cases. 

  Fabric local durability failure between the ribs in a separate case is below. 

Holding in scorn by fabric surface curvature in a separate case like an analytical 

model for an outer cover, we are able to accept plate set up strengthened along the 

edges. Plate edges strengthening are situated between the guiding fin and jamming 

according to test information. 
2

tп

м

.п.кр
a

Еk 






 
 , 7,6kп   

It’s worth noting that handling marks appearance between them don’t lead to lifting 

power exhaustion of stiffened shell, but decreases by 15 – 20% з

кр  with sufficient 

strict ribs. From this perspective, it’s desirable to be provided with the condition 
з

кр

м

кр  . 

 

Stringer local storage qualities failure is possible for separates types of waffle shell 

(with sizable ribs). Analytical model is a compressional plate where its first edge is 

free and another one is leaned (in material factor). Then: 
2

tп

м

с.кр
h

c
Еk 








 , 38,0kп  . 

It’s worth paying attention to the fact that the last three formulas operates only in 

elastic region. It is possible beyond the elasticity edges: 

 

а) approximate empirical equations applying; 

б) calculations according to contacting elasticity modulus carrying out: 

 

 EEt , 
 
  ппт

п




 . 

 

  - actual stresses, п  - proportionality edge, т  - yielding limit. 



 

 

Strength loss has its place if axial stresses reach the parameter т and in circular 

direction - в , so the strength condition looks like: 

 

t,т1  , t,векв  . 

 

According to the third failure theory, it is going to be like 

 

t,в1212екв  . 

 

Waffle tank wall design analysis. (Optimization task statement) 

 

It’s given: dimensional specifications R,L. Loads like T,M,Pн,Pг,tº in suitable 

simulation cases material AMg6M or AMg6NN. 

It’s requires: to determine the waffle wall characteristics that provides the tank 

functional capability and minimum mass (square case,  , ісх , С=S, a=b). 

 

І Tank non-destroying conditions: 

 

Operational stresses: 

 

c

min

р

екв
1

R2

RPТ




  

ш

p

max

c

p

max
2

RPRP





  

 

1) Storage qualities conditions 

з

кр1   
м

п.кр1   
м

с.кр1   

 

2) Strength conditions: 

 

t,T1   

t,T12екв   

 

ІІ Object function is a shell mass. The characteristics that provide the Mmin are being 

determined. 

 

eRL2M   



 

 

e - conventional unstiffened shell equivalent thickness where its mass equals to 

waffle shell mass. 

 

2e
a

Ch)Ca(

a

Ch

ab

CSh

b

Ch

a

Sh 
  

a

Ch2

b

)(C2 ісх
e 


  

ІІІ It’s necessary to consider the technological and structure pattern qualifications 

during the objective structure characteristics defining. These characteristics can be 

entitled to qualifications: 

- original plate thickness    max.ісхісх   

 - plating thickness   техн  

- ribs thickness  технтехн SCSC   

 

 At this rate, optimization problem arises: we have to determine the waffle shell 

characteristics  , ісх , S=C, a=b along with the given envelope, loads and materials 

that provide the minimum of a function  h,C,,MM ісх  during the non – destroying 

conditions performing and by considering the qualifications. 

 This is a complex multivariable optimization problem (became known as, 

nonlinear programming problemтак звана). Various optimization algorithms can be 

applied for its solving: random search method, gradient method and others. These 

are difficult calculating algorithms that are in need of personal computer using.  

 Along with that, there are some approximate approaches that allow us to 

determine the shell characteristics close to optimized one relatively simple. These 

approaches are applied during the preliminary design phases when it’s essential to 

determine all the shell geometric characteristics, to specify the compartment mass 

and the whole aircraft depending on acting load. When this happens, various design 

alternates like unstiffened one, panelized – boom one and waffle one are being 

considered. 

 We have familiarized with one of such approximate approaches during the 

practice time by using book of V.T. Lyzin, V.A. Pyatkin which is called "Thin-slab 

structure design". 

 

Panel immunity reinforced by axial framework 

 

 Plates that are used in aircraft structures with a view of critical load building 

up as a rule are ribbed with an axial framework like stringers and in some cases with 

frames. 

 Such structures are usually called panels. Panels can be both planed and 

curved.  

 Immunity loss among the stringers for the whole structures set is acceptable. 

For example, oblate wing part envelope can receive the craters placed among the 

stringers.  



 

Thin envelope immunity loss is also acceptable for the stringer structure dry 

compartment in most cases. These actions have to be considered during the structural 

analysis. 

Let’s consider approximately the way of envelope loading evaluation that 

has lost its immunity into the panel lifting power. 

Let’s consider the flat panel reinforced by two stringers. The panel is loaded 

by distributed load. «Т» is a this load resulting force. 

 

As long as the load is not big enough, the 

stress divides up all along the panel width 

intimately and being determined according 

the equation: 

 

 

 
 

стрooо F2hbТ   

 

With the increase of load Т, the stress о

increases by reaching the value о

кр and the 

envelope losing its immunity. 

 

 стрoo

о

кр F2hbТ   

 

Т is a load magnitude where the envelope 

will lose its immunity.  

Under TT  the loads are taken up 

generally by stringers, but the envelope 

part that is adjacent to stringers keeps on 

operating.  

Stress to envelope immunity loss divides 

up intimately and they have the minimum 

in the panel mid-point and reach its 

maximum values along the edges after the 

immunity loss. 

If the envelope and stringer are made from 

the same material and connected by welding or densely spaced rivets, so the stresses 

on the envelope edges and in stringers are the same. 

In order to determine the load accommodation by a plate after envelope immunity 

loss, it’s necessary to know the exact stress distribution law which can only be found 

as a result of complex problem solving about hypercritical plate behavior. 

Different approximate approaches are applied for approximate estimate of envelope 

loading that has lost the immunity in the general lifting power. 
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The most statistically reliable one turns out to be the following: 

Averaging out the undetermined distribution all along the plate width according to 

geometric mean rule, so considering that the whole plate operates with average 

stress: 
o

max

о

кр

о

ср   

Then, the loads that are taken up by the panel can be written: 
о

срoo

c

c hbF2T   

If the envelope and stringer material are identic, so it will be со

т  . 

 Panel destroying is connected with the boundary stresses attainment in 

stringers. And the panel lifting power is consist of  a plate and stringers lifting power: 

 
о

срoo

c

гранcнес hbF2T  , where o

гран

о

кр

о

ср  . 

 

 During practical analysis, we are able to take into account the envelope 

operation process approximately in another way and evaluate the panel lifting 

power: 

Let’s tale the fact that the envelope center portion which has lost 

the immunity don’t operate at all, but in the part of the plate with 

width крb , the stresses effect c

max   that intimately borders on 

stringer. 

The panel intersection area that takes up the compression is 

determined like a sum of stringers areas and envelope parts with 

width крb . Then: 
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It is possible to be understood under с

гран : 

 

- liquid limit; 

- the critical stress of stringer elements local buckling; 

- the critical stress of stringer general buckling. 

 

In most cases, panel destroying is driven by stringer general buckling. As a matter 

of fact, plate elements unscrewing don’t lead to destroying, but it can start the 

general buckling even before value о

крT  attainment by the load.  

Equistability criterion is applied during the design of minimum mass panels: 

 
м

кр

о

крд  . 

 

In real standardized profiles: о

кр

м

кр 1,1  . 

 

 



 

Stiffened cylindrical shell analysis under the axial compression 

Riveted structure dry compartment analysis 

 

Loading and structural layout features 

 

 Axial compression force and bending moment are determinative loads for 

axial compartment. 

 As it known, smooth shells under axial compression force action operate 

highly inefficiently. If compression critical forces compare with liquid limit, so 

σкр/σт = 0,1-0,2 will be for smooth unstiffened shells. Small value                                         

σкр/σт testify to non-rationality of such shells applying in dry compartments 

structure. But, anyway, such structures are used in a view of short compartments (for 

example, during the tanks with dry compartments fitting 

) as a result of their process – oriented simplicity. Short compartments can be 

feasible if they don’t compose a large part in the aircraft mass balance.  Stringer and 

spar structures are the most widely used in the air force and rocket and space 

technology.  

 Structures of such compartments consist of envelope strengthened by 

longitudinal members like stringers and longerons and also by a transverse frames. 

 Envelope stability loss between ribs under comparatively low load level is 

admitted for the most part of such structures. Stringers are principal structural 

elements in this case.  

 Stringer structure critical stresses are significantly higher than the ones of 

equivalent on mass smooth shell. In such structures, it is possible to reach the stress 

level σкр/σт = 0,4-0,5. 

Analysis from structural theory point of view 

 

 
 

а) smooth one                            б) stringer – stiffened one 

 

So, stringer shortening increases massively the σкр. The length can be decreased by 

raising the intermediate frames, then: 
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 Thus, frames key role is bearings for stringers. But they can only be bearings 

with sufficient stiffness. So, there has to be presented the specific proportion 

between (ЕІ)с and (ЕІ)ш. 

 As a result of fact, structure behavior will be characterized by the following 

parameters: hо,Eо,Eс,Fс,Iс,Eш,Fш,Iш and their number. 

 Such structure analysis is a complex problem, especially with recesses, 

envelope immunity loss considering and etc. It can be solved by finite element 

method, but this is a very labor-consuming deal because approximate approaches are 

applied in that matter.  

 Stringers are the principal structure elements and the destroying connects with 

stringers immunity loss.  

  

The following analytic models are possible to use: 

 

Compartment has the form of sticks kit with the attached envelope, so the 

functional capability conditions is written in a view of:  
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1. The whole envelope operation is considered in the second analytical model, but 

the operation with the loads σо
ср and the lifting power of such compartment is 

considered to be equal to stringers lifting power sum and the joined envelope. 

Operational capability condition is comfortable to be written down in a form of: 

Тр ≤ То
кр, Тр ≤ Тм

кр, де То
кр and Тм

кр are envelope lifting powers in a case of 

general and local stringers immunity loss. 

 

Principal structural element operation 

 

 We have analyzed the way of determining the panel lifting power stiffened by 

stringers approximately before. Let’s distribute this approach for shell lifting power 

determination stiffened by stringers and frames. 

 Design fundamental concept is a lifting power of classic structure dry 

compartment that works in compression is approximately equal to stringers and 

envelope lifting power sum. Let’s remind once again the necessary formulas shortly. 

Now, we will consider the simplified version. You should have a look at «Rocket 

structures integrity» where more exact relations are presented.  

 

Shell analysis on a general immunity 

 

 Stringers 

 

 Analysis according to bar immunity formulas 

Two forms of immunity loss are possible. The first one is general and the second 

one is local.   



 

General immunity 

General immunity critical stresses are defined without the envelope taking into 

account. Envelope effect is considered a little bit later during shell lifting power 

determination on the whole.  
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Envelope between stringers 

 

The envelope is considered like a cylindrical panel that is simply depicted on 

stringers and frames. Formulas for stiffened panel with envelope angularity 

accounting are used.  

Envelope immunity loss is possible.  

It’s something like:  
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In the elastic field: 
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Finally:  

 

 oo

о

срc

c

о.кро.нес hbFnТ  , where n is a number of stringers. 

 

Stringer shell analysis on local immunity 

 

Stringers 

 

Separate plate elements are discriminated in the stringer transversal intersection 

(booms, webs). Breaking stresses calculation according to compression plates set up 

is performed for each structure member.  
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hc and bc are stringer structural member thickness and width that are under 

consideration; 

К is a coefficient that takes into account grip conditions (long plate sides). 

In material factor for the web, it is approximately equals to kз=3,6 and for the boom 

kз=0,38. More exactly: have a look at «Rocket structures design». 

 

Envelope 

 

Breaking and average demolition stress of envelope section is calculated according 

to analogy about general immunity calculation.  

 

Difference 
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 Compression stringer shell lifting power in a case of stringers local immunity 

loss: 
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S is a stringer profile element number. 
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Checking and design calculation 

 

Non-destroying shell condition 
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Safety factor 
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Functional capability conditions are used: 
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