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Introduction 

Modern automatic control systems that are used in energy, transport, aviation, 

and space technology differ significantly from those simple systems for which the 

classical theory of automatic control was developed.  

For comparison, consider the main features of classical and modern automatic 

control theory. 

Classic theory of automatic control:  

Application area – one-dimensions, linear, dynamics systems. 

Mathematical apparatus: 

➢ Linear differential equations.  

➢ Laplace transforming 𝑭(𝒔) = 𝑳{𝒇(𝒕)} = ∫ 𝒆−𝒔𝒕𝒇(𝒕)𝒅𝒕


𝟎
,  

where s – Laplace’s variable.  

➢ Transfer functions 𝑾(𝒔) = 𝑴𝒎(𝒔)/𝑵𝒏(𝒔), m – nominator order, n – 

denominator order, n > m.  

➢  𝑵𝒏(𝒔) – characteristics polynomial of system.  

➢ Frequency characteristics - 𝑨(), (),𝑾(𝒋).  

➢ application of standard links of automatic control systems. 

Tasks to be solved: 

➢ Determination of the stability of automatic control systems;  

➢ the use of algebraic (Hurwitz, Routh) and frequency (Mikhailov, Nyquist-

Mikhailov) stability criteria;  

➢ determination of the transfer function of the system by the control and 

disturbing influences;  

➢ creation of transient processes of the system. 

Description of systems in the space of state variables: 

The field of application: 

The analysis and synthesis of multidimensional, linear, dynamic systems 

operating under conditions of uncontrolled random disturbances. 
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Mathematical apparatus: 

➢ Systems of differential equations. 

➢ Matrix differential equations. 

➢ Matrix calculations. 

➢ The use of the concepts of controllability and observability. 

Tasks to be solved: 

➢ Analysis of the system: does the system have the property of complete 

controllability and complete observability; 

➢ System synthesis: a) solving the problem of modal control; b) solving the 

problem of analytical design of the optimal controller;  

➢ Creation of the mathematical models of uncontrolled random perturbations 

in the state space;  

➢ Construction of an observing device that provides an estimate of the state 

vector of the system;  

➢ Creation of an extended observing device that provides an estimate of the 

state vector of the system and also an estimate of the vector of uncontrolled random 

disturbances acting on the system;  

➢ Synthesis of a closed system that provides the given dynamic properties of 

the system and compensation for uncontrolled random disturbances. 
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Topic 1. Control systems design in the space of state 

variables 
 

1.1 General model for describing the automatic control systems in the space 

of state variables, taking into account the action of uncontrolled random 

disturbances. 

 

The general model can be represented as follows: 

{
𝑿̇(𝒕) = 𝑨𝑿(𝒕) + 𝑩𝑼(𝒕) + 𝑭𝑾(𝒕)
𝒀(𝒕) = 𝑪𝑿(𝒕)

                           (1.1) 

where X(t) is the object’s state vector, fully characterizing the current state of the 

object’s variables; 

Y(t) – the vector of object output variables that directly ensure the achievement of 

the control goal; 

U(t) – the vector of control signals applied to the inputs of the control system; 

W(t) – vector of uncontrolled random perturbations acting to the system and causing 

deviation of the vector of output variables Y(t) from the given values; 

A, B, C, F – matrices of coefficients of the mathematical model of the object, which 

can be obtained when solving problems of structural and parametric 

identification of the control object. 

The vector of random disturbances W(t) can be considered as the output of 

some dynamical system of the form: 

{
𝒁̇(𝒕) = DZ(𝒕) + 𝜶𝒊𝜟𝒊(𝒕 − 𝝉)
𝑾(𝒕) = HZ(𝒕)

                                    (1.2) 

where Z(t) is the “state” vector of disturbances acting on the subsystems of the 

control object; 

W(t) – equivalent signal perturbations, which, when applied to the input of the 

system, cause a corresponding deviation of the vector of output variables Y(t) 

from the given values; 
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 D, H – matrices of coefficients of the mathematical model of uncontrolled random 

disturbances, the structure and parameters of which depend on the nature of 

the disturbances actually acting on the object and can be determined on the 

basis of experimental studies; 

𝜶𝒊I – sequence vector of -functions with weight coefficients I changing in a 

random, piecewise-constant manner at random times. 

 
Fig. 1.1. The block diagram of the control object  

mathematical model  

 

When synthesizing automatic control systems, an important question is whether 

it is possible, using negative feedback, to obtain the necessary dynamic characteristics 

of a closed system. 

To answer this question, the concept of complete controllability of the system is 

introduced. 

          H 

    D      F 

    B 

     A 

    C        
U(t) X(t) Y(t) 

Z(t) W(t)     ii 
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1.2 The concept of controllability of a linear dynamical system. Controllability 

criterion. 

 

The concept of controllability for system (1.1) consists in answering the question 

whether it is possible, by introducing feedbacks 

𝑼(𝒕) = 𝑲𝑿(𝒕) 

provide the required values of all components of the system state vector X(t). This 

concept is inextricably linked with the possibility of placing the roots of the 

characteristic equation of the system on the complex plane in a given way by 

introducing feedbacks. 

The criterion for the complete controllability of system (1.1) is the equality of 

the rank of its controllability matrix Qc to the order n of the system, i.e., 𝑟𝑎𝑛𝑘[𝑸𝒄] =

𝑛, where the controllability matrix is defined as follows: 

𝑸𝒄 = [B, AB, A𝟐B, ... , A𝒏−𝟏𝑩].                                  (1.3) 
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1.3 Solution of the problem of modal control. 

 

The synthesis of an automatic control system based on the solution of the modal 

control problem is to implement the control law of the following form: 

𝑼(𝒕) = 𝑲𝟏𝑿(𝒕) + 𝑲𝟐𝑾(𝒕),                                        (1.4)  

where K1 – matrix of feedback coefficients, providing the required placement of the 

poles of the closed system on the complex plane; 

K2 – a matrix of feedback coefficients that provides full compensation for the 

influence of random disturbances W(t) on the vector of output variables Y(t). 

Since the mathematical models (1.1) and (1.2) are linear approximations, the 

determination of the numerical values of the elements of the matrices K1 and K2 can 

be determined independently. 

The block diagram of a closed system in which a control law of the form (1.4) is 

implemented has the form, as shown in Fig. 1.2. 

  

Fig. 1.2. The block diagram of a closed system 

 

     

 

   H 

 
    D 

 

    F 

 
    B 

 
     A 

 

    C 

 

       

 

    K2 

 

   K1 

 

Z(t
) 

W(t
) 

   

ii 

V(t
) 

U(t
) 

X(t
) 

Y(t
) 
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To determine the elements of the feedback matrix K1 when solving the problem 

of modal control, it is necessary to write the equation of a closed system for the form 

(1.1) taking into account the control law (1.4) in such form 

𝑿̇(𝒕) = [𝑨 + BK𝟏][𝑿(𝒕)].                                         (1.5) 

When solving the problem of modal control by choosing the feedback matrix of 

the system K1, you can get any desired placement of the closed system poles on the 

complex plane. 

To determine the numerical values of the elements of the feedback matrix K1, it 

is necessary to equate the characteristic polynomial corresponding to the closed 

system equation (1.5) to some desired characteristic polynomial 

  𝒅𝒆𝒕[ 𝒔𝑰 − 𝑨 − BK𝟏] = 
𝒅
(𝒔),                                 (1.6) 

where s – the Laplace variable; I – identity matrix; 

d(s) – the desired characteristic polynomial of the closed system. 

Setting the distance of closed system poles removal on the complex plane from 

the imaginary axis 0, and also choosing various forms of the desired closed system 

characteristic polynomials, from (1.6) we obtain a system of algebraic equations for 

determining the numerical values of the elements of the feedback matrix K1. 

This problem is solved unambiguously only for systems with one input, and the 

problem of choosing of the desired characteristic polynomial d(s) is difficult to 

formalize and depend on the qualifications of the system developers. 
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1.4 Determination of the feedback matrix, which provides full compensation 

for the influence of disturbances on the vector of the system output variables. 

 

To determine the matrix of feedback K2, which provides full compensation for 

the effect of disturbances W(t) on the vector of the system output variables, we can 

write the solution of the equations (1.1) in the form 

𝒀(𝒕) = Ce𝑨(𝒕−𝒕𝟎)𝑿𝟎 + 𝑪∫[𝒆
𝑨(𝒕−𝝉)BU(𝒕) + FHZ(𝝉)]dτ.       (1.7) 

In order for uncontrolled random perturbations W(t) acting on the system not 

to affect the vector of output variables Y(t), it is necessary and sufficient that the 

second term in (1.7) be equal to zero. This can be achieved if there is such a matrix 

K2, for which the condition will be satisfied:  

Ce𝑨(𝒕−𝝉)BK𝟐 + FH = 𝟎, 

whence we obtain that the matrix K2  must satisfy the following condition: 

BK𝟐 + FH = 𝟎.                                                      (1.8) 

Thus, the matrix K2 can be determined if the numerical values of the matrices B, 

F, H are known. 
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1.5 Recommendations for choosing the desired characteristic polynomial of a 

closed system. 

 

As one of the typical characteristic polynomials of a system with an aperiodic 

nature of the transient process, it is proposed to use a characteristic polynomial with 

binomial coefficients: 

𝑁(𝑝) = (𝑝 + 𝜔0)
𝑛,                                                 (1.9) 

where 0 is the distance of the characteristic polynomial roots removal from the 

imaginary axis on the complex plane; n is the order of the system. 

One of the possible indicators of the quality of the transition function h(t) can 

be its deviation from the ideal step function 1(t), which can be estimated by the 

integral 

𝐼 = ∫ [1(𝑡) − ℎ(𝑡)]2𝑑𝑡
∝

0
.                                         (1.10) 

The characteristic polynomials that ensure the minimum of the squared error 

integral (1.10) have the form 

N2(p) = p2 + 0p + 02 

N3(p) = p3 + 0p2 + 202 p + 03 

N4(p) = p4 + 0p3 + 302 p2 + 203 p +  04                                                    

N5(p) = p5 + 0p4  + 402 p3 + 303 p2 +304 p + 05                               (1.11)                                                                                                                             

N6(p) = p6 + 0p5 + 502 p4 + 403 p3 +604 p2 + 305 p + 06                                                                                                                                   

N7(p) = p7 + 0p6 + 602 p5 + 503 p4 +1004 p3 +605 p2 +406+ 

+p+07 

N8(p) = p8 + 0p7  + 702 p6  +603 p5 +1504 p4  +1005 p3+1006 p2 

+ 407p + 08 

If the indicator of the quality of the transient process is the minimum of the 

integral of the weighted error modulus 
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𝐼 = ∫ 𝑡|1(𝑡) − ℎ(𝑡)|𝑑𝑡
∝

0
                                          (1.12) 

then typical characteristic polynomials have the following forms: 

N2(p) = p2 +1,410 p + 02 

N3(p) = p3 +1,750 p2 +2,1502 p + 03 

N4(p) = p4 +2,100 p3 +3,4002 p2 +2,7003 p + 04                                                       

N5(p) = p5 +2,800 p4  +5,002 p3 +5,503 p2 +3,404 p + 05                                                                                                          

N6(p) = p6 +3,250 p5 +6,602 p4 +8,603 p3 +7,4504 p2 +3,9505 p + 

06                                                                                                       (1.13)     

N7(p) = p7 +4,470 p6 +10,2402 p5 +15,0803 p4 +15,5404 p3 + 

10,6405 p2 +4,5806 p+07 

N8(p) = p8 +5,20 p7+12,802 p6 +21,603 p5 +25,7504 p4 + 22,205p3 

+13,306 p2 +5,1507p + 08 

Consider another approach to the choice of typical models. From the theory of 

active filters, it is known that one of the undesirable types of signal distortions are 

phase distortions, which are the greater, the stronger the phase-frequency 

characteristic of the system differs from linear. In the theory and practice of active 

filters, it is shown that Thomson filters have the closest to linear phase-frequency 

response. The characteristic polynomials of the transfer functions of these filters are 

Bessel polynomials, therefore such filters are called Bessel-Thomson filters. 

The characteristic polynomials of the Bessel-Thomson model have the form: 

N2(p) = p2 +2,200 p +1,62 0
2 

N3(p) = p3 +3,420 p2 +4,870
2 p +2,77 0

3 

N4(p) = p4 +4,730 p3 +10,070
2 p2 +11,120

3 p + 5,26 0
4  

N5(p) = p5 +6,180 p4  +17,820
2 p3 +29,370

3 p2 +  

          +27,230
4 p +11,22 0

5                                                                         (1.15)                                                           
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N6(p) = p6 + 7,770 p5 + 28,740
2 p4 + 63,780

3 p3 + 88,480
4p2 + 72,00

5 p+ 

26,63 0
6 

N7(p) = p7 +9,490 p6 +43,00
2 p5 +121,830

3 p4 +228,180
4 p3 + 278,290

5 

p2 +204,270
6 p+69,210

7 

N8(p) = p8 +11,30 p7+62,100
2 p6+214,730

3 p5+506,400
4 p4 + 

828,270
5p3 + 912,210

6 p2 + 615,530
7p + 94,08 0

8 

Thus, using typical characteristic polynomials of the form (1.9, 1.11, 1.13 - 1.15) 

when solving the problem of modal control, it is possible to satisfy various 

requirements for the dynamic characteristics of a system closed in terms of the state 

vector variables. 
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1.6 Solution of the problem of analytical design of the optimal controller. 

Riccati equation. 

 

Under the condition of complete controllability of a linear system of the form 

(1.1), the roots of the characteristic equation of a closed system can be arbitrarily 

placed on the complex plane by choosing a feedback matrix K1 and thus ensure the 

desired dynamics of a closed system of automatic control. 

However, the formal solution of the modal control task causes to a significant 

increase in the amplitude of control signals. In any practical task of synthesis of a 

control system, the amplitude of control signals U(t) is limited, which imposes 

restrictions on the areas of possible placement of the poles of a closed system. 

Accounting for such a constraint causes to the formulation of the problem of 

analytical design of the optimal controller, in which the choice of feedback 

coefficients of the system involves the optimization of the integral square criterion, 

which takes into account both the quality of the transient process and the magnitude 

of the control signals. 

For control objects of the form (1.1), the control law of the form 

𝑼(𝒕) = 𝑲𝟏(𝒕)𝑿(𝒕) 

ensures minimization of the integral quadratic criterion of the following form: 

𝑰 = ∫ 𝑿𝑻(𝒕)𝑸𝟏(𝒕)𝑿(𝒕)dt
𝒕𝒌
𝒕𝟎

+ ∫ 𝑼𝑻(𝒕)𝑸𝟐(𝒕)𝑼(𝒕)dt
𝒕𝒌
𝒕𝟎

+

𝑿𝑻(𝒕𝒌)𝑸𝟎𝑿(𝒕𝒌),                                                                                                (1.16) 

where X(t) is the system state vector; U(t) – vector of control signals; Q0, Q1, Q2 – 

given matrices of weight coefficients. 

In this case, the matrix of feedback coefficients K1 is determined as 

   𝑲𝟏(𝒕) = 𝑸𝟐
−𝟏(𝒕)𝑩𝑻(𝒕)𝑹(𝒕),                                      (1.17) 

where R(t) is the solution of the matrix Riccati equation, which has the form 



16 
 

𝑹̇(𝒕) = 𝑨𝑻(𝒕)𝑹(𝒕) + 𝑹(𝒕)𝑨(𝒕) + 𝑸𝟏(𝒕) − 𝑹(𝒕)𝑩(𝒕)𝑸𝟐
−𝟏(𝒕)𝑩𝑻(𝒕)𝑹(𝒕)                                        

(1.18) 

with a final condition at the point tk: R(tk)=Q0. 

For stationary systems, the optimal feedback coefficients at t →  tends to a 

steady value and expression (1.17) takes the following form: 

𝑲𝟏 = 𝑸𝟐
−𝟏𝑩𝑻𝑹,                                                  (1.19) 

where R is a positive-definite solution of the matrix equation following from equation 

(1.18) and which takes the following form: 

𝑨𝑻𝑹 + RA + 𝑸𝟏 − RBQ𝟐
−𝟏𝑩𝑻𝑹 = 𝟎.                     (1.20) 
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1.7 Determination of a mathematical model of uncontrolled random 

disturbances acting on the system. 

 

Uncontrolled random disturbances acting on the system can be represented as 

a weighted sum of some typical signals, the parameters of which change in a random, 

piecewise constant manner at random times. Such perturbations can be represented 

as 

𝑤(𝑡) = 𝑐1𝑓1(𝑡) + 𝑐2𝑓2(𝑡) + ⋯+ 𝑐𝑚𝑓𝑚(𝑡)                    (1.21) 

Random signal (1.21) can be considered as a weighted combination of known 

basic functions with unknown weight coefficients. If step, linear and quadratic signals 

are taken as basic functions, then expression (1.21) can be represented as: 

𝑤(𝑡) = 1 + 2𝑡 + 3𝑡
2.                                        (1.22) 

A dynamic model whose output is a polynomial signal (1.22) can be represented 

as: 

{

𝑧̇1(𝑡) = 𝑧2(𝑡) + 1 · 1(𝑡 − 1)

𝑧̇2(𝑡) = 𝑧3(𝑡) + 2 · 2(𝑡 − 2)

𝑧̇3(𝑡) = 3 · 3(𝑡 − 3)
                               (1.23) 

The dynamic model (1.23) can be represented in the matrix form 

{
𝒁̇(𝒕) = DZ(𝒕) + 𝜶𝒊𝜟𝒊(𝒕 − 𝝉)
𝑾(𝒕) = HZ(𝒕)

, 

where 𝒁(𝒕) = [

𝑧1
𝑧2
𝑧3
] – vector of disturbances states; 

𝐷 = [
0 1 0
0 0 1
0 0 0

];  𝐻 = [1 0 0] - matrices, the parameters of which are 

obtained based on the analysis of uncontrolled random perturbations acting on the 

control object. 
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1.8 Example 

Let us consider a simple system consisting of aperiodic links of the first and 

second orders, to the inputs of which control signals u1 and u2 are applied, and the 

output signals of which x1 and x3 are summed and fed through the amplifying link to 

the output y, as shown in Fig. 1.3. 

 

Fig. 1.3. Block scheme of the control object 

 

For the system presented in fig. 1.3 let’s write the systems of equations: 

{

𝑇1𝑇2𝑥̈1(𝑡) + (𝑇1 + 𝑇2)𝑥̇1(𝑡) + 𝑥1 = 𝑘1𝑢1(𝑡)
𝑇3𝑥̇3(𝑡) + 𝑥3(𝑡) = 𝑘2𝑢2(𝑡)

𝑦(𝑡) = 𝑘3(𝑥1(𝑡) + 𝑥3(𝑡))
. 

Transform the resulting system of equations to the form: 

{
 
 

 
 𝑥̈1(𝑡) = −

𝑇1+𝑇2

𝑇1𝑇2
𝑥̇1(𝑡) −

1

𝑇1𝑇2
𝑥1(𝑡) +

𝑘1

𝑇1𝑇2
𝑢1(𝑡)

𝑥̇3(𝑡) = −
1

𝑇3
𝑥3(𝑡) +

𝑘2

𝑇3
𝑢2(𝑡)

𝑦(𝑡) = 𝑘3(𝑥1(𝑡) + 𝑥3(𝑡))

. 

Introducing the notation 𝑥̇1(𝑡) = 𝑥2(𝑡), we can write: 

{
 
 

 
 

𝑥̇1(𝑡) = 𝑥2(𝑡)

𝑥̇2(𝑡) = −
1

𝑇1𝑇2
𝑥1(𝑡) −

𝑇1+𝑇2

𝑇1𝑇2
𝑥2(𝑡) +

𝑘1

𝑇1𝑇2
𝑢1(𝑡)

𝑥̇3(𝑡) = −
1

𝑇3
𝑥3(𝑡) +

𝑘2

𝑇3
𝑢2(𝑡)

𝑦(𝑡) = 𝑘3(𝑥1(𝑡) + 𝑥3(𝑡))

. 

𝑦1 

𝑘1
(𝑇1𝑠 + 1)(𝑇2𝑠 + 1)

 

𝑘2
(𝑇3𝑠 + 1)

 

𝑢2 

𝑥3 

𝑥1 𝑢1 

𝑘3 
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From the resulting system of equations, we obtain the matrices of the 

mathematical model of the system of the form (1.1): 

𝑿(𝒕) =  [

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)
]; 𝑨 = [

0 1 0
𝑎21 𝑎22 0
0 0 𝑎33

];  𝑩 = [

0 0
𝑏21 0
0 𝑏32

]; 

                       𝑪 = [𝑐11 0 𝑐13] 

where 𝑎21 = −
1

𝑇1𝑇2
 ; 𝑎22 = −

𝑇1+𝑇2

𝑇1𝑇2
 ; 𝑎33 = −

1

𝑇3
 ; 𝑏21 = −

𝑘1

𝑇1𝑇2
 ; 𝑏32 =

−
𝑘2

𝑇3
; 𝑐11 = 𝑘3; 𝑐13 = 𝑘3. 

The resulting matrices of the system make it possible to analyze the 

controllability of the system, solve the problem of modal control and analytical design 

of the optimal controller. 
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Topic 2. Application of the observers in the control systems 

 

2.1 Necessity of an observing device using in structure of the closed control 

system. 

 

Methods for the synthesis of closed systems, based both on solving the problem 

of modal control and analytical design of optimal controllers, suggest: firstly, the 

presence of a mathematical model of the control object of the form (1.1) and a model 

of random perturbations of the form (1.2), and secondly, the assumption of that all 

components of the vectors X(t) of the object and Z(t) of random perturbations are 

available for direct measurement. These assumptions underlie the use of a control 

law of the form (1.4). 

For the synthesis of real control systems, it is necessary to have a mathematical 

model of the object in the form of matrices A, B, C, F, as well as matrices D and H, 

characterizing the mathematical model of random disturbances. These matrices can 

be determined as a result of structural and parametric identification based on 

theoretical and experimental studies of the control object. 

As for the measurement of the vectors X(t) and Z(t), these vectors are not 

available for direct measurement for real technical systems. Therefore, to implement 

the considered control laws, it is necessary to include an observing device into the 

closed system, designed to obtain an estimate of the vectors X*(t) of the object and 

an estimate of the vector of random disturbances Z*(t), which can be used in a 

control law of the form (1.4). 
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2.2 The concept of observability of a linear dynamical system. Observability 

criterion. 

 

In modern control theory, along with the concept of controllability, the concept 

of observability is widely used. If the system has the property of complete 

observability, then, having mathematical models (1.1), it is possible to construct 

such a dynamic model (observing device) that will provide an estimate of the state 

vector of the system X*(t). 

The criterion for complete observability of system (1.1) is the equality of the 

rank of its observability matrix Qobs to the order n of the system, i.e. 𝑟𝑎𝑛𝑘[𝑸𝒐𝒃𝒔] =

𝑛, where the observability matrix is defined as follows: 

𝑸𝒐𝒃𝒔 = [𝑪, 𝑪𝑨, 𝑪𝑨𝟐, ... , C 𝑨𝒏−𝟏].                               (2.1) 
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2.3 Example of the simplest observing device. 

 

If the mathematical model of the control object of the form (1.1) is known, i.e. 

matrices A, B, C are defined, then a digital or analog model of the system can be 

considered as the simplest observing device: 

{
𝑿̇∗(𝒕) = 𝑨𝑿∗(𝒕) + 𝑩𝑼(𝒕)
𝒀∗(𝒕) = 𝑪𝑿∗(𝒕)

                                        (2.2) 

to which the same vector of control signals U(t) is applied as to the real object, as 

shown in Fig. 2.1. 

 

Fig. 2.1. The simplest observing device 

 

Since the observing device contains an exact mathematical model of the control 

object, the same control signals U(t) are applied to the inputs of the object and the 

observer, it can be assumed that the state vector of the system X(t) and its estimate 

at the output of the observing device X*(t) will coincide. 

In reality, these vectors do not coincide, because the control object and its 

mathematical model have different initial conditions, therefore, even if an exact 

mathematical model is used, the vectors X(t) and X*(t) will not coincide. Therefore, 

instead of the observing device shown in Fig. 2.1, an asymptotic observer is used. 

 

    B 

     A 

    C        
X*(t) Y*(t)

U(t) Y(t) Object of control 

A, B, C 

X*(t)   
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2.4 The asymptotic observing devise. 

 

To ensure that the estimate of the state vector of the system X*(t) of the 

observer tends to the state vector of the real system X(t), an asymptotic observer is 

used. The principle of operation of such an observer is as follows. The vectors of the 

output variables of the control object Y(t) and the observer Y*(t) = CX*(t) are 

compared, and the magnitude of the signal difference in the form of a negative 

feedback signal through the matrix L is fed to the observer's input. The mathematical 

model of the asymptotic observer has the following form: 

𝑿̇∗(𝒕) =  𝑨𝑿∗(𝒕)  + 𝑩𝑼(𝒕) + 𝑳[𝑪𝑿∗(𝒕) − 𝒀(𝒕)] ,           (2.3) 

where the observer's feedback matrix L ensures tends to X*(t) → X(t). 

The block diagram of the asymptotic observer is shown in Fig. 2.2. 

 

Fig. 2.2. The asymptotic observer block diagram 

The observer's feedback matrix L determines the rate of the process of 

estimating the state vector of the system. Thus, to creation an asymptotic observer, 

it is necessary to know not only the matrices of the mathematical model of the 

object A, B, C, but also to determine the values of the elements of the matrix L. 

    B 

     A 

    C        
X*(t) 

U(t) Y(t) 
Object of control 

A, B, C 

X*(t)   

     L 
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To determine the observer's feedback matrix L, we represent expression (2.3) 

in the following form: 

𝑿̇∗(𝒕) = (𝑨+𝑳𝑪)𝑿∗(𝒕) + 𝑩𝑼(𝒕) − 𝑳𝒀(𝒕).                    (2.4) 

It is known that the condition X*(t) → X(t) will be fulfilled if the observer, as 

a closed dynamical system, is stable. 

To determine the numerical values of the elements of the feedback matrix L, it 

is necessary to equate the characteristic polynomial corresponding to the closed 

system equation (2.4) to some desired characteristic polynomial 

𝑑𝑒𝑡[ 𝑠𝑰 − 𝑨 − LC] = 
ж
(𝑠),                                       (2.5) 

where s is the Laplace variable; I - identity matrix. 

From expression (2.5) we obtain a system of algebraic equations for obtaining 

the elements of the matrix L. 

We can say that the matrix L of the observer is determined in the same way as 

the matrix of feedback coefficients K is determined when solving the problem of 

modal control of a closed system. 

Having created an asymptotic observer, the obtained estimates of the state 

vector of the system X* (t) can be used in the control law (1.4). 
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2.5 The extended observing devise. 

 

In the control law (1.4), along with the state vector of the system X(t), the 

uncontrolled random disturbances, acting to the object of control, W(t) is used, 

which are also inaccessible for direct measurement. Therefore, along with obtaining 

an estimate of the state vector of the system X*(t), it is necessary to obtain an 

estimate of the uncontrolled random disturbances W(t) acting on the system. 

This problem can be solved by constructing an extended observer whose 

mathematical model has the following form: 

[
𝑿̇∗(𝒕)

𝒁̇∗(𝒕)
] = [

𝑨 + 𝑳𝟏𝑪 FH
𝑳𝟐𝑪 𝑫

] [
X*(𝒕)
Z*(𝒕)

] − [
𝑳𝟏
𝑳𝟐
] 𝒀(𝒕) + [

𝑩
𝟎
]𝑼(𝒕),   (2.6) 

where L1, L2 are the observer's feedback coefficient matrices, which ensure that the 

estimation error of the object state vector and the state vector of random 

disturbances tends to zero. 

To determine the numerical values of the elements of the unknown feedback 

matrices L1 and L2  of the observer, we write down the characteristic polynomial of 

the observer and equate it to some desired characteristic polynomial.  

The equation for the estimation error of the variables X(t), Z(t) for the observing 

device has the form: 

[
𝒆̇𝒙(𝒕)
𝒆̇𝒛(𝒕)

] = [
𝑨 + 𝑳𝟏𝑪 FH
𝑳𝟐𝑪 𝑫

] [
𝒆𝒙(𝒕)
𝒆𝒛(𝒕)

].                              (2.7) 

The characteristic polynomial of the observer in this case solutions, as 

obs(s) = det([
𝑨 + 𝑳𝟏𝑪 FH
𝑳𝟐𝑪 𝑫

] − 𝑠I).                             (2.8) 

Equating the coefficients of the characteristic polynomial of the observing device 

(2.8) with the coefficients of some desired characteristic polynomial, we obtain a 

system of equations for determining the unknown elements of the feedback matrices 

of the observing device L1 and L2. 
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The structure of the extended observer and the scheme of its connection to the 

control object is shown in fig. 2.3. 

 
Fig. 2.3. The extended observing devise   

Object of control 

A, B, C, D, F, H 

      

 

   H 

 

   D 

 

    F 

 

   B 

 

    A 

 
    C 

 

      

 

   L2 

 

   L1 

 

U(t) Y(t) 

X*(t
) 

W*(t
) 

Z*(t
) 



27 
 

2.6 Results of digital modeling of a system closed in terms of the state vector. 

When solving the modal control problem described in p.1.3, the matrix K1 is 

determined taking into account the recommendations for choosing the desired 

characteristic polynomial presented in p. 1.4. 

In the process of modeling the system considered in the example of p. 1.8, 

elements of the feedback matrix K1 were obtained for the binomial form of the 

characteristic polynomial, Butterworth and Bessel-Thomson. For each characteristic 

polynomial, the elements of matrix K1 are obtained for three values of the distance 

of the closed system poles from the imaginary axis: q = 4, 8, 20. The results of digital 

simulation are shown in Figs. 2.4 - 2.6. 

The dynamics of a closed system was estimated from the curve of the transient 

process of the system from non-zero initial conditions of the variable x1(0) of the 

system. 

 

Fig 2.4. Dynamics of the closed system for binomial  

characteristics polynomial 

 

Fig 2.5. Dynamics of the closed system for Butterworth  

characteristics polynomial 
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Fig 2.6. Dynamics of the closed system for Bessel-Thomson 

 characteristics polynomial 

 

The simulation results show that, as expected, a closed system with the binomial 

form of the characteristic polynomial (Fig. 2.4) has a minimum speed. 

The system with the Butterworth characteristic polynomial (Fig. 2.5) has a higher 

speed, but the transient process is oscillatory and overshoot appears. 

A closed system with the Bessel-Thomson characteristic polynomial (Fig. 2.6) has the 

maximum speed with virtually no oscillations and overshoot. 

By changing the degree of removal of the poles of a closed system from the 

imaginary axis, one can obtain the required value of the system speed. 
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2.7 Modeling the processes of estimating the state vector of the system by the 

asymptotic observer.  

 
Section 2.4 presents a technique for constructing an asymptotic observer and an 

algorithm for obtaining the numerical values of the feedback matrix L of the observer 

as a closed system. In the process of modeling an asymptotic observer for the system 

considered in the example of section 1.8, elements of the feedback matrix L were 

obtained for the binomial form of the characteristic polynomial, Butterworth and 

Bessel-Thomson (Fig. 2.7 - 2.9).  

For each characteristic polynomial, the elements of matrix L are obtained for 

three values of the degree of distance of the system poles from the imaginary axis: q 

= 10, 15, 20.  

The dynamics of the observer was estimated from the curve of the transient 

process of estimating the variable x1*(t) of the system under nonzero initial 

conditions. 

 

 

 

Fig. 2.7. Dynamics of observing process for the observer  

binomial characteristics polynomial 
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Fig. 2.8. Dynamics of observing process for the observer  

Butterworth characteristics polynomial 

 

 

 

Fig. 2.9. Dynamics of observing process for the observer  

Bessel-Thomson characteristics polynomial 
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2.8 Modeling the process of estimating random disturbances acting on the 

control object.  

 

To simulate the process of estimating random disturbances acting on the control 

object, the mathematical model of the extended observer (2.6) was used, the block 

diagram of which was shown in Fig. 2.3. When studying the dynamics of the process 

of estimating random perturbations, signals were applied to the input of the object, 

which were a combination of stepwise and linearly varying signals that correspond to 

real perturbations of the wave structure acting on the control object. The simulation 

results are shown in Fig. 2.10 -2.12. 

 

Fig. 2.10. Dynamics of the disturbance’s estimation process for binomial observer 

characteristics polynomial  

 

 
Fig. 2.11. Dynamics of the disturbance’s estimation process for Butterworth observer 

characteristics polynomial  
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Fig. 2.12. Dynamics of the disturbance’s estimation process for Bessel-Thomson 

observer characteristics polynomial  
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2.9 Simulation of the closed system operation under the action of random 

disturbances.  

 

To simulate a system closed in terms of the state vector under the action of 

random disturbances, we will use the mathematical model of a closed system (Fig. 

1.2) and the mathematical model of an extended observer (Fig. 2.3). The results of 

simulation of a closed system under the action of random disturbances are shown in 

Fig. 2.13 – 2.15. 

Fig. 2.13. Dynamics of closed system for binomial characteristics polynomial  

and the advanced observer 

 

 

Fig. 2.13. Dynamics of closed system for Butterworth characteristics polynomial and 

the advanced observer 



34 
 

 

Fig. 2.13. Dynamics of closed system for Bessel-Thomson characteristics polynomial 

and the advanced observer 
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